Giả sử một loại hàng hoá có hàm cầu được mô hình hoá bởi p = 100 – 0,5x và hàm chi phí được mô hình hoá bởi C = 40x + 37,5, trong đó p (nghìn đồng) là giá của một đơn vị hàng hoá đó.
Khi lợi nhuận là lớn nhất, chi phí trung bình cho mỗi đơn vị là bao nhiêu?
Giả sử một loại hàng hoá có hàm cầu được mô hình hoá bởi p = 100 – 0,5x và hàm chi phí được mô hình hoá bởi C = 40x + 37,5, trong đó p (nghìn đồng) là giá của một đơn vị hàng hoá đó.
Quảng cáo
Trả lời:

Theo câu a, với lợi nhuận lớn nhất, ta có x = 60.
Vậy chi phí trung bình cho mỗi đơn vị hàng hóa là:
(nghìn đồng).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử tình huống được mô tả bởi hình vẽ dưới đây với C là vị trí mắt của người quan sát, DB = 4 m là chiều cao của bức tranh, AD = 3 m là khoảng cách từ mép dưới của bức tranh đến mắt người quan sát.
Giả sử AC = x (m) là khoảng cách từ người quan sát đến tường, x > 0.
Khi đó, ta có: và
Áp dụng hệ quả định lí Cosin vào tam giác BCD, ta có:
Hay
Với θ ∈ (0°; 90°), để góc nhìn θ lớn nhất thì cosθ nhỏ nhất.
Đặt hàm số xét trên khoảng (0; +∞).
Khi đó, ta cần tìm giá trị nhỏ nhất của f(x) trên (0; +∞).
Ta có
f’(x) = 0 ⇔ 16x3 – 336x = 0 ⇔ x = 0 (loại) hoặc x2 = 21
(do x ∈ (0; +∞)).
Lập bảng biến thiên của hàm số trên khoảng (0; +∞).
|
0 |
|
|
|
+∞ |
|
|
– |
0 |
+ |
|
|
|
|
|
|
1
|
Từ bảng biến thiên, ta có khi
Vậy người quan sát phải đứng cách tường mét để có được tầm nhìn thuận lợi nhất (tức là, có góc nhìn θ lớn nhất).
Lời giải
Gọi x (m) là chiều cao của đèn, x > 0.
Khi đó, ta có: s2 = x2 + 202 = x2 + 400 và
Cường độ chiếu sáng của đèn là:
Xét hàm số trên khoảng (0; +∞).
Đạo hàm của hàm số I là:
Ta có I’ = 0 ⇔ 400 – x2 = 0 ⇔ x = 20 (do x > 0).
Lập bảng biến thiên của hàm số trên khoảng (0; +∞).
|
0 |
|
20 |
|
+∞ |
|
|
+ |
0 |
– |
|
|
0 |
|
0,025
|
|
0 |
Từ bảng biến thiên, ta có khi x = 20.
Vậy độ cao của cột đèn là 20 mét thì sẽ chiếu sáng mạnh nhất cho lối đi bộ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.