Câu hỏi:

12/07/2024 8,614 Lưu

Một bức tranh cao 4 m được treo trên tường có mép dưới cao hơn tầm mắt người quan sát 3 m (như hình vẽ). Người quan sát phải đứng cách tường bao nhiêu mét để có được tầm nhìn thuận lợi nhất (tức là, có góc nhìn θ lớn nhất)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giả sử tình huống được mô tả bởi hình vẽ dưới đây với C là vị trí mắt của người quan sát, DB = 4 m là chiều cao của bức tranh, AD = 3 m là khoảng cách từ mép dưới của bức tranh đến mắt người quan sát. 

Giả sử AC = x (m) là khoảng cách từ người quan sát đến tường, x > 0.

Khi đó, ta có:

Áp dụng hệ quả định lí Cosin vào tam giác BCD, ta có:

Hay

Với θ (0°; 90°), để góc nhìn θ lớn nhất thì cosθ nhỏ nhất.

Đặt hàm số xét trên khoảng (0; +∞).

Khi đó, ta cần tìm giá trị nhỏ nhất của f(x) trên (0; +∞).

Ta có

f’(x) = 0  16x3 – 336x = 0 x = 0 (loại) hoặc x2 = 21

                (do x  (0; +∞)).

Lập bảng biến thiên của hàm số trên khoảng (0; +∞).

0

 

 

+∞

 

0

+

 

1

 

 

 

1

 

Từ bảng biến thiên, ta có khi

Vậy người quan sát phải đứng cách tường mét để có được tầm nhìn thuận lợi nhất (tức là, có góc nhìn θ lớn nhất).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x (m) là chiều cao của đèn, x > 0.

Khi đó, ta có: s2 = x2 + 202 = x2 + 400

Cường độ chiếu sáng của đèn là:

Xét hàm số trên khoảng (0; +∞).

Đạo hàm của hàm số I là:

Ta có I’ = 0 400 – x2 = 0 x = 20 (do x > 0).

Lập bảng biến thiên của hàm số trên khoảng (0; +∞).

0

 

20

 

+∞

 

+

0

 

0

 

0,025

 

 

0

Từ bảng biến thiên, ta có khi x = 20.

Vậy độ cao của cột đèn là 20 mét thì sẽ chiếu sáng mạnh nhất cho lối đi bộ.

Lời giải

Gọi x và y lần lượt là số sản phẩm thứ nhất và sản phẩm thứ hai cần sản xuất.

Lợi nhuận thu được là: 400x + 600y (nghìn đồng).

Hệ bất phương trình ràng buộc x và y là

Miền nghiệm của hệ bất phương trình này là miền ngũ giác OABCD được tô màu như hình vẽ dưới đây:

Ở đây, d1: 2x + y = 70, d2: x + y = 40 và d3: x + 3y = 90.

Các điểm cực biên là: O(0; 0), A(0; 30), B(15; 25), C(30; 10), D(35; 0).

Bài toán yêu cầu tìm giá trị lớn nhất của F(x; y) trên miền nghiệm của hệ bất phương trình trên. Ta biết rằng, F(x; y) đạt giá trị lớn nhất tại một trong các đỉnh của ngũ giác. Tính giá trị của F(x; y) tại các đỉnh của ngũ giác ta được:

F(0; 0) = 400.0 + 600.0 = 0;

F(0; 30) = 400.0 + 600.30 = 18 000;

F(15; 25) = 400.15 + 600.25 = 21 000;

F(30; 10) = 400.30 + 600.10 = 18 000;

F(35; 0) = 400.35 + 600.0 = 14 000.

Giá trị lớn nhất của F(x; y) bằng 21 000 tại điểm cực biên B(15; 25). Phương án tối ưu là (15; 25).

Vậy cần sản xuất 15 đơn vị sản phẩm thứ nhất và 25 đơn vị sản phẩm thứ hai để lợi nhuận thu được là lớn nhất.