Câu hỏi:

12/07/2024 3,198

Một công ty bán hàng toàn quốc đang lên kế hoạch tổ chức cuộc họp bán hàng tại Đà Nng. Giá vé máy bay khứ hồi thấp nhất từ Hà Nội đến Đà Nẵng là 2 triệu đồng và giá vé khứ hồi thấp nhất từ Thành phố Hồ Chí Minh đến Đà Nẵng là 2,4 triệu đồng. Có 28 đại diện bán hàng ở Hà Nội và 22 đại diện bán hàng ở Thành phố Hồ Chí Minh có thể đến Đà Nng dự cuộc họp này. Tổng cộng ít nhất 40 đại diện bán hàng từ Hà Nội và Thành phố Hồ Chí Minh phải tham dự cuộc họp này với ít nhất 12 người từ Hà Nội và 16 người từ Thành phố Hồ Chí Minh. Cần cử bao nhiêu đại diện bán hàng ở Hà Nội và bao nhiêu đại diện bán hàng ở Thành phố Hồ Chí Minh đến dự cuộc họp bán hàng ở Đà Nẵng để tổng chi phí vé máy bay là nhỏ nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x và y lần lượt là số đại diện bán hàng ở Hà Nội và Thành phố Hồ Chí Minh được cử đến dự cuộc họp bán hàng ở Đà Nẵng.

Tổng chi phí vé máy bay là: 2x + 2,4x (nghìn đồng).

Hệ bất phương trình ràng buộc x và y là

Miền nghiệm của hệ bất phương trình này là miền tứ giác ABCD được tô màu như hình vẽ dưới đây với đường thẳng d: x + y = 40.

Các điểm cực biên là: A(18; 22), B(28; 22), C(28; 16), D(24; 16).

Bài toán yêu cầu tìm giá trị nhỏ nhất của F(x; y) trên miền nghiệm của hệ bất phương trình trên. Ta biết rằng, F(x; y) đạt giá trị nhỏ nhất tại một trong các đỉnh của tứ giác. Tính giá trị của F(x; y) tại các đỉnh của tứ giác ta được:

F(18; 22) = 2.18 + 2,4.22 = 88,8;

F(28; 22) = 2.28 + 2,4.22 = 108,8;

F(28; 16) = 2.28 + 2,4.16 = 94,4;

F(24; 16) = 2.24 + 2,4.16 = 86,4.

Giá trị nhỏ nhất của F(x; y) bằng 86,4 tại điểm cực biên B(24; 16). Phương án tối ưu là (24; 16).

Vậy cần cử 24 đại diện bán hàng ở Hà Nội và 16 đại diện bán hàng ở Thành phố Hồ Chí Minh đến dự cuộc họp bán hàng ở Đà Nẵng để tổng chi phí vé máy bay là nhỏ nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử tình huống được mô tả bởi hình vẽ dưới đây với C là vị trí mắt của người quan sát, DB = 4 m là chiều cao của bức tranh, AD = 3 m là khoảng cách từ mép dưới của bức tranh đến mắt người quan sát. 

Giả sử AC = x (m) là khoảng cách từ người quan sát đến tường, x > 0.

Khi đó, ta có:

Áp dụng hệ quả định lí Cosin vào tam giác BCD, ta có:

Hay

Với θ (0°; 90°), để góc nhìn θ lớn nhất thì cosθ nhỏ nhất.

Đặt hàm số xét trên khoảng (0; +∞).

Khi đó, ta cần tìm giá trị nhỏ nhất của f(x) trên (0; +∞).

Ta có

f’(x) = 0  16x3 – 336x = 0 x = 0 (loại) hoặc x2 = 21

                (do x  (0; +∞)).

Lập bảng biến thiên của hàm số trên khoảng (0; +∞).

0

 

 

+∞

 

0

+

 

1

 

 

 

1

 

Từ bảng biến thiên, ta có khi

Vậy người quan sát phải đứng cách tường mét để có được tầm nhìn thuận lợi nhất (tức là, có góc nhìn θ lớn nhất).

Lời giải

Gọi x (m) là chiều cao của đèn, x > 0.

Khi đó, ta có: s2 = x2 + 202 = x2 + 400

Cường độ chiếu sáng của đèn là:

Xét hàm số trên khoảng (0; +∞).

Đạo hàm của hàm số I là:

Ta có I’ = 0 400 – x2 = 0 x = 20 (do x > 0).

Lập bảng biến thiên của hàm số trên khoảng (0; +∞).

0

 

20

 

+∞

 

+

0

 

0

 

0,025

 

 

0

Từ bảng biến thiên, ta có khi x = 20.

Vậy độ cao của cột đèn là 20 mét thì sẽ chiếu sáng mạnh nhất cho lối đi bộ.