Câu hỏi:
12/07/2024 6,803Người ta muốn xây một bể bơi có dạng hình hộp chữ nhật, thể tích 1 800 m3 và chiều sâu 2 m (Hình 7). Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Cần chọn chiều dài và chiều rộng của bể bằng bao nhiêu để tiết kiệm chi phí xây dựng bể nhất?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi x, y (x > 0, y > 0, tính bằng mét) lần lượt là chiều dài và chiều rộng của bể.
Thể tích của bể là V = 2xy = 1 800 (m3), suy ra (m).
Diện tích đáy bể là Sđ = xy (m2).
Diện tích thành bể là St = 2(x + y) ∙ 2 = 4(x + y) (m2).
Giả sử chi phí để xây mỗi đơn vị diện tích thành bể là a (đồng, a > 0).
Khi đó chi phí để xây mỗi đơn vị diện tích đáy bể là 2a (đồng).
Tổng chi phí để xây bể bơi là
C = 2axy + a ∙ 4(x + y) = (đồng).
Xét hàm số f(x) = 1800a + 4ax + với x ∈ (0; + ∞) và a > 0.
Ta có f'(x) = 4a – ;
f'(x) = 0 ⇔ .
Bảng biến thiên:
Từ bảng biến thiên, ta có , đạt được tại x = 30.
Với x = 30 m thì ta có .
Vậy với chiều rộng và chiều dài của bể bằng nhau và bằng 30 m thì tiết kiệm được chi phí xây dựng bể nhất.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hai nhà máy được đặt tại các vị trí A và B cách nhau 4 km. Nhà máy xử lí nước thải được đặt ở vị trí C trên đường trung trực của đoạn thẳng AB, cách trung điểm M của đoạn thẳng AB một khoảng là 3km. Người ta muốn làm đường ống dẫn nước thải từ hai nhà máy A, B đến nhà máy xử lí nước thải C gồm các đoạn thẳng AI, BI và IC, với I là vị trí nằm giữa M và C (Hình 4). Cần chọn vị trí điểm I như thế nào để tổng độ dài đường ống nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Câu 2:
Người ta muốn thiết kế một lồng nuôi cá có bề mặt hình chữ nhật bao gồm phần mặt nước có diện tích bằng 54 m2 và phần đường đi xung quanh với kích thước (đơn vị: m) như Hình 8. Bề mặt của lồng có chiều dài và chiều rộng bằng bao nhiêu để diện tích phần đường đi là bé nhất?
Câu 3:
Mặt cắt ngang của một máng dẫn nước là một hình thang cân có độ dài đáy bé bằng độ dài cạnh bên và bằng a (cm) không đổi (Hình 5). Gọi α là một góc của hình thang cân tạo bởi đáy bé và cạnh bên . Tìm α để diện tích mặt cắt ngang của máng lớn nhất.
Câu 4:
Người ta muốn xây một đường cống thoát nước có mặt cắt ngang là hình tạo bởi một nửa hình tròn ghép với một hình chữ nhật (Hình 6). Biết rằng mặt cắt ngang có diện tích 2 m2. Các kích thước x, y (đơn vị: m) bằng bao nhiêu để chu vi của mặt cắt ngang là nhỏ nhất? Tính chu vi nhỏ nhất đó.
Câu 5:
Câu 6:
Một người đang ở vị trí A muốn đi đến vị trí B trên bờ hồ như hình bên. Biết rằng người đó chèo thuyền với tốc độ 50 m/phút và chạy bộ với tốc độ 100 m/phút. Nếu người đó chèo thuyền thẳng từ A đến B thì tốn bao nhiêu thời gian? Có phương án nào tốn ít thời gian hơn không?
về câu hỏi!