Câu hỏi:
12/07/2024 2,856Một nhà phân phối có thể thuê tối đa 3 chiếc xe tải loại A và 8 chiếc xe tải loại B để vận chuyển 100 chiếc máy giặt từ nhà sản xuất đến nơi tiêu thụ. Mỗi xe loại A chở được tối đa 20 máy giặt với giá cước 3 triệu đồng mỗi chuyến, mỗi xe loại B chở được tối đa 10 máy giặt với giá cước 2 triệu đồng mỗi chuyến. Nếu mỗi xe chở nhiều nhất một chuyến, số tiền cước tối thiểu (triệu đồng) mà nhà phân phối phải trả là
A. 19.
B. 17.
C. 15.
D. 25.
Quảng cáo
Trả lời:
Đáp án đúng là: B
Gọi x, y (x ≥ 0; y ≥ 0; x, y ∈ ℤ) lần lượt là số chiếc xe tại loại A và loại B nhà phân phối thuê để vận chuyển máy giặt.
Vì có thể thuê tối đa 3 chiếc xe tải loại A và 8 chiếc xe tải loại B nên x ≤ 3 và y ≤ 8.
Tổng số máy giặt vận chuyển nhiều nhất được khi dùng x xe loại A và y xe loại B nếu mỗi xe chỉ chở nhiều nhất một chuyến là 20x + 10y (chiếc).
Vì phải vận chuyển 100 chiếc máy giặt nên 20x + 10y ≥ 100 hay 2x + y ≥ 10.
Số tiền cước (triệu đồng) mà nhà phân phối phải trả là F = 3x + 2y.
Từ đó, ta nhận được bài toán quy hoạch tuyến tính:
F = 3x + 2y → min
với ràng buộc
Tập phương án Ω của bài toán là miền tam giác ABC được tô màu như hình vẽ dưới và có các đỉnh là A(1; 8), B(3; 8) và C(3; 4).
Giá trị của F tại các đỉnh:
F(1; 8) = 3 ∙ 1 + 2 ∙ 8 = 19;
F(3; 8) = 3 ∙ 3 + 2 ∙ 8 = 25;
F(3; 4) = 3 ∙ 3 + 2 ∙ 4 = 17.
Suy ra .
Vậy số tiền cước tối thiểu mà nhà phân phối phải trả là 17 triệu đồng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bán kính và chiều cao của thùng chứa lần lượt là R và h (dm; R, h > 0).
Thể tích thùng chứa hình trụ là V = πR2h = 500 (dm3).
Suy ra (dm).
Để tiết kiệm nguyên liệu nhất thì diện tích toàn phần của thùng chứa phải nhỏ nhất.
Diện tích toàn phần của thùng chứa hình trụ là
S = 2πRh + 2πR2 = =
(dm2).
Xét hàm số với R ∈ (0; + ∞).
Ta có ;
∈ (0; + ∞).
Bảng biến thiên:
Từ bảng biến thiên, ta có , đạt được tại
.
Với thì ta có
.
Vậy với bán kính (dm) và đường cao
(dm) thì tiết kiệm nguyên liệu làm thùng chứa nhất.
Lời giải
Doanh thu của đơn vị tổ chức buổi biểu diễn văn nghệ là:
D = px = 500 ∙ e– 0,0005x ∙ x = 500xe– 0,0005x (nghìn đồng) với x > 0.
Xét hàm số f(x) = 500xe– 0,0005x với x ∈ (0; + ∞).
Ta có f'(x) = 500e– 0,0005x(1 – 0,0005x);
f'(x) = 0 ⇔ 1 – 0,0005x = 0 ⇔ x = 2 000 ∈ (0; + ∞).
Bảng biến thiên:
Từ bảng biến thiên, ta có , đạt được khi x = 2 000.
Với x = 2 000, ta có p = 500 ∙ e– 0,0005 ∙ 2 000 = ≈ 184.
Vậy đơn vị tổ chức nên bán vé với giá 184 nghìn đồng thì đạt được doanh thu cao nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận