Câu hỏi:

12/07/2024 2,090

Hàm lượng protein, lipid và glucid (tính theo gam) trong 100 g mỗi loại thực phẩm A và B được cho bởi bảng sau:

 

Protein

Lipid

Glucid

A

24

3

60

B

8

2

80

 

Từ hai loại thực phẩm A và B, người ta muốn tạo ra một lượng thực phẩm chứa ít nhất 480 g protein, 90 g lipid và 2 400 g glucid. Biết rằng một kilôgam mỗi loại thực phẩm

A và B có giá lần lượt là 80 nghìn đồng, 100 nghìn đồng. Cần chọn bao nhiêu kilôgam mỗi loại thực phẩm A và B để chi phí thấp nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x, y (x ≥ 0, y ≥ 0, tính theo kg) lần lượt là khối lượng thực phẩm A và B cần dùng.

Vì lượng thực phẩm tạo ra chứa ít nhất 480 g protein, 90 g lipid và 2 400 g glucid nên ta có các bất phương trình sau

hay

Chi phí mua hai loại thực phẩm A và B là T = 80x + 100y (nghìn đồng).

Từ đó, ta nhận được bài toán quy hoạch tuyến tính:

T = 80x + 100y → min

với ràng buộc

Tập phương án Ω của bài toán là miền không gạch chéo trên hình dưới đây, có các đỉnh A(4; 0), , C(1; 3) và D(0; 6).

Miền Ω nằm trong góc phần tư thứ nhất, các hệ số của hàm mục tiêu T dương nên T đạt giá trị nhỏ nhất tại đỉnh của Ω.

Giá trị của T tại các đỉnh:

T(4; 0) = 80 4 + 100 0 = 320;

;

T(1; 3) = 80 1 + 100 3 = 380;

T(0; 6) = 80 0 + 100  6 = 600.

Suy ra , đạt được khi x = 2; .

Vậy cần mua 2 kg thực phẩm loại A và 1,5 kg thực phẩm loại B thì chi phí thấp nhất.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bán kính và chiều cao của thùng chứa lần lượt là R và h (dm; R, h > 0).

Thể tích thùng chứa hình trụ là V = πR2h = 500 (dm3).

Suy ra (dm).

Để tiết kiệm nguyên liệu nhất thì diện tích toàn phần của thùng chứa phải nhỏ nhất.

Diện tích toàn phần của thùng chứa hình trụ là

S = 2πRh + 2πR2 = = (dm2).

Xét hàm số với R (0; + ).

Ta có ;

  (0; + ).

Bảng biến thiên:

Từ bảng biến thiên, ta có , đạt được tại .

Với thì ta có .

Vậy với bán kính (dm) và đường cao (dm) thì tiết kiệm nguyên liệu làm thùng chứa nhất.

Lời giải

Doanh thu của đơn vị tổ chức buổi biểu diễn văn nghệ là:

D = px = 500 ∙ e– 0,0005x  x = 500xe– 0,0005x (nghìn đồng) với x > 0.

Xét hàm số f(x) = 500xe– 0,0005x với x (0; + ).

Ta có f'(x) = 500e– 0,0005x(1 – 0,0005x);

f'(x) = 0 1 – 0,0005x = 0 x = 2 000 (0; + ).

Bảng biến thiên:

Từ bảng biến thiên, ta có , đạt được khi x = 2 000.

Với x = 2 000, ta có p = 500 ∙ e– 0,0005  2 000 =   184.

Vậy đơn vị tổ chức nên bán vé với giá 184 nghìn đồng thì đạt được doanh thu cao nhất.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay