Câu hỏi:

12/07/2024 3,033 Lưu

Một người muốn làm một thùng chứa hình trụ có nắp, có dung tích 500 dm3. Cần chọn bán kính đáy và chiều cao của thùng bằng bao nhiêu để tiết kiệm nguyên liệu nhất? Biết đáy và mặt xung quanh của thùng có độ dày như nhau và xác định trước.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bán kính và chiều cao của thùng chứa lần lượt là R và h (dm; R, h > 0).

Thể tích thùng chứa hình trụ là V = πR2h = 500 (dm3).

Suy ra (dm).

Để tiết kiệm nguyên liệu nhất thì diện tích toàn phần của thùng chứa phải nhỏ nhất.

Diện tích toàn phần của thùng chứa hình trụ là

S = 2πRh + 2πR2 = = (dm2).

Xét hàm số với R (0; + ).

Ta có ;

  (0; + ).

Bảng biến thiên:

Từ bảng biến thiên, ta có , đạt được tại .

Với thì ta có .

Vậy với bán kính (dm) và đường cao (dm) thì tiết kiệm nguyên liệu làm thùng chứa nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Doanh thu của đơn vị tổ chức buổi biểu diễn văn nghệ là:

D = px = 500 ∙ e– 0,0005x  x = 500xe– 0,0005x (nghìn đồng) với x > 0.

Xét hàm số f(x) = 500xe– 0,0005x với x (0; + ).

Ta có f'(x) = 500e– 0,0005x(1 – 0,0005x);

f'(x) = 0 1 – 0,0005x = 0 x = 2 000 (0; + ).

Bảng biến thiên:

Từ bảng biến thiên, ta có , đạt được khi x = 2 000.

Với x = 2 000, ta có p = 500 ∙ e– 0,0005  2 000 =   184.

Vậy đơn vị tổ chức nên bán vé với giá 184 nghìn đồng thì đạt được doanh thu cao nhất.

Lời giải

Đáp án đúng là: B

Gọi x, y (x ≥ 0; y ≥ 0; x, y  ) lần lượt là số chiếc xe tại loại A và loại B nhà phân phối thuê để vận chuyển máy giặt.

Vì có thể thuê tối đa 3 chiếc xe tải loại A và 8 chiếc xe tải loại B nên x ≤ 3 và y ≤ 8.

Tổng số máy giặt vận chuyển nhiều nhất được khi dùng x xe loại A và y xe loại B nếu mỗi xe chỉ chở nhiều nhất một chuyến là 20x + 10y (chiếc).

Vì phải vận chuyển 100 chiếc máy giặt nên 20x + 10y ≥ 100 hay 2x + y ≥ 10.

Số tiền cước (triệu đồng) mà nhà phân phối phải trả là F = 3x + 2y.

Từ đó, ta nhận được bài toán quy hoạch tuyến tính:

F = 3x + 2y → min

với ràng buộc

Tập phương án Ω của bài toán là miền tam giác ABC được tô màu như hình vẽ dưới và có các đỉnh là A(1; 8), B(3; 8) và C(3; 4).

Giá trị của F tại các đỉnh:

F(1; 8) = 3 1 + 2 8 = 19;

F(3; 8) = 3 3 + 2 8 = 25;

F(3; 4) = 3 3 + 2 4 = 17.

Suy ra .

Vậy số tiền cước tối thiểu mà nhà phân phối phải trả là 17 triệu đồng.