Câu hỏi:

12/07/2024 183 Lưu

Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh:

 a2 + b2 + c2 < 2(ab + bc + ca);

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do a, b, c là độ dài ba cạnh của một tam giác nên a > 0, b > 0, c > 0.

Theo bất đẳng thức tam giác ta có: a + b > c, b + c > a, c + a > b.

Ta có a < b + c nên a2 < a(b + c).

Tương tự, ta có: b2 < b(c + a), c2 < c(a + b).

Do đó a2 + b2 + c2 < a(b + c) + b(c + a) + c(a + b)

Hay a2 + b2 + c2 < 2(ab + bc + ca).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hiệu:

3(x2 + y2 + z2) – (x + y + z)2

= 3x2 + 3y2 + 3z2 – (x2 + y2 + z2 + 2xy + 2yz + 2zx)

= 3x2 + 3y2 + 3z2 – x2 – y2 – z2 – 2xy – 2yz – 2zx

= 2x2 + 2y2 + 2z2 – 2xy – 2yz – 2zx

Mà theo câu b, ta có 2x2 + 2y2 + 2z2 ≥ 2xy + 2yz + 2zx

Hay 2x2 + 2y2 + 2z2 – 2xy – 2yz – 2zx ≥ 0

Suy ra 3(x2 + y2 + z2) – (x + y + z)2 ≥ 0

Vậy 3(x2 + y2 + z2) ≥ (x + y + z)2.

Lời giải

Với ba số thực x, y, z tùy ý, ta có:

(x – y)2 ≥ 0; (y – z)2 ≥ 0; (z – x)2 ≥ 0

Suy ra (x – y)2 + (y – z)2 + (z – x)2 ≥ 0

Hay x2 – 2xy + y2 + y2 – 2yz + z2 + z2 – 2zx + x2 ≥ 0

Do đó 2x2 + 2y2 + 2z2 ≥ 2xy + 2yz + 2zx

Suy ra x2 + y2 + z2 ≥ xy + yz + zx.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP