Câu hỏi:
24/07/2024 159
Đọc đoạn trích sau đây và trả lời câu hỏi:
Mưa đi! Mưa đi! Mưa cho táo bạo
Mưa như chưa bao giờ mưa, sấm sét đùng đùng
Nhưng làm sao mưa cứ ngại ngùng
Chập chờn bay phía xa khơi...
(Đợi mưa trên đảo Sinh Tồn – Trần Đăng Khoa)
Biện pháp tu từ nào được sử dụng trong dòng thơ in đậm?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Mưa đi! Mưa đi! Mưa cho táo bạo
Mưa như chưa bao giờ mưa, sấm sét đùng đùng
Nhưng làm sao mưa cứ ngại ngùng
Chập chờn bay phía xa khơi...
(Đợi mưa trên đảo Sinh Tồn – Trần Đăng Khoa)
Biện pháp tu từ nào được sử dụng trong dòng thơ in đậm?
Quảng cáo
Trả lời:
Bài ca dao trên được kết cấu theo hình thức đối đáp: lời hỏi của người em và lời đáp của người anh. Chọn C.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trên giao tuyến \(\Delta \) của hai mặt phẳng \((P),\,\,(Q)\) ta lấy lần lượt 2 điểm \[A,\,\,B\] như sau:
• Lấy \(A\left( {x\,;\,\,y\,;\,\,1} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x - y = 0}\\{x + 2y = 0}\end{array} \Rightarrow x = y = 0 \Rightarrow A\left( {0\,;\,\,0\,;\,\,1} \right)} \right..\)
• Lấy \(B\left( { - 1\,;\,\,y\,;\,\,z} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{y + z = 0}\\{2y + z = 2}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{y = 2}\\{z = - 2}\end{array} \Rightarrow B\left( { - 1\,;\,\,2\,;\,\, - 2} \right)} \right.} \right..\)
Vì \(\Delta \in (\alpha )\) nên \(A,\,\,B \in (\alpha ).\) Do đó, ta có: \(\left\{ {\begin{array}{*{20}{l}}{2 + b = 0}\\{ - a + b - 6 = 0}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 8}\\{b = - 2}\end{array}} \right.} \right..\)
Vậy \(a + 4b = - 8 + 4 \cdot \left( { - 2} \right) = - 16.\) Chọn A.
Lời giải
Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).
Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.
Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.