Câu hỏi:
24/07/2024 206
Đọc đoạn trích sau đây và trả lời câu hỏi:
Người làng Thành Trung có nghề trồng rau thơm. Ở đây có một huyền thoại kể rằng, vì yêu quý con sông xinh đẹp, nhân dân hai bờ sông Hương đã nấu nước của trăm loài hoa đổ xuống dòng sông cho làn nước thơm tho mãi mãi.
Ai đã đặt tên cho dòng sông? Có lẽ huyền thoại trên đã giải đáp câu hỏi ấy chăng?
(Trích Ai đã đặt tên cho dòng sông? – Hoàng Phủ Ngọc Tường)
Đoạn trích trên có gì độc đáo?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Người làng Thành Trung có nghề trồng rau thơm. Ở đây có một huyền thoại kể rằng, vì yêu quý con sông xinh đẹp, nhân dân hai bờ sông Hương đã nấu nước của trăm loài hoa đổ xuống dòng sông cho làn nước thơm tho mãi mãi.
Ai đã đặt tên cho dòng sông? Có lẽ huyền thoại trên đã giải đáp câu hỏi ấy chăng?
(Trích Ai đã đặt tên cho dòng sông? – Hoàng Phủ Ngọc Tường)
Đoạn trích trên có gì độc đáo?
Quảng cáo
Trả lời:
Đoạn kết thúc đã trả lời cho câu hỏi đặt ra ở nhan đề, một nhan đề rất thơ, rất gợi cảm mà lại gợi được sự tìm hiểu, khám phá rất cuốn hút người đọc. Kết thúc ấy cũng đã thể hiện rõ tình yêu của con người nơi đây với dòng sông của xứ Huế đẹp và thơ. Chọn D.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trên giao tuyến \(\Delta \) của hai mặt phẳng \((P),\,\,(Q)\) ta lấy lần lượt 2 điểm \[A,\,\,B\] như sau:
• Lấy \(A\left( {x\,;\,\,y\,;\,\,1} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x - y = 0}\\{x + 2y = 0}\end{array} \Rightarrow x = y = 0 \Rightarrow A\left( {0\,;\,\,0\,;\,\,1} \right)} \right..\)
• Lấy \(B\left( { - 1\,;\,\,y\,;\,\,z} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{y + z = 0}\\{2y + z = 2}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{y = 2}\\{z = - 2}\end{array} \Rightarrow B\left( { - 1\,;\,\,2\,;\,\, - 2} \right)} \right.} \right..\)
Vì \(\Delta \in (\alpha )\) nên \(A,\,\,B \in (\alpha ).\) Do đó, ta có: \(\left\{ {\begin{array}{*{20}{l}}{2 + b = 0}\\{ - a + b - 6 = 0}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 8}\\{b = - 2}\end{array}} \right.} \right..\)
Vậy \(a + 4b = - 8 + 4 \cdot \left( { - 2} \right) = - 16.\) Chọn A.
Lời giải
Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).
Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.
Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.