Câu hỏi:
24/07/2024 34Mạch điện xoay chiều chỉ chứa tụ điện \(C = \frac{1}{{7200\pi }}F\), hiệu điện thế xoay chiều ổn định đặt vào hai đầu mạch là \(u = {U_0}\cos \left( {\omega t + \frac{\pi }{4}} \right)V.\) Tại thời điểm \({t_1},\) ta có \({u_1} = 60\sqrt 2 V\) và \({i_1} = \frac{{\sqrt 2 }}{2}A,\) tại thời điểm \({t_2},\) ta có \({u_2} = - 60\sqrt 3 V\) và \({i_2} = - 0,5A.\) Biểu thức của điện áp u là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do mạch chỉ có C nên: \(u \bot i \Rightarrow \frac{{{u^2}}}{{U_0^2}} + \frac{{{i^2}}}{{I_0^2}} = 1\)
Thay các giá trị, ta có: \(\left\{ {\begin{array}{*{20}{c}}{\frac{{{{\left( {60\sqrt 2 } \right)}^2}}}{{U_0^2}} + \frac{{{{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2}}}{{I_0^2}} = 1}\\{\frac{{{{\left( {60\sqrt 3 } \right)}^2}}}{{U_0^2}} + \frac{{{{\left( {0,5} \right)}^2}}}{{I_0^2}} = 1}\end{array}} \right.\) \( \Rightarrow \frac{{3600}}{{U_0^2}} = \frac{{0,25}}{{I_0^2}} \Rightarrow \frac{{{U_0}}}{{{I_0}}} = 120 = {Z_C}\)
Lại có: \({Z_C} = \frac{1}{{\omega C}} \Rightarrow \omega = \frac{1}{{{Z_C}C}} = \frac{1}{{120.C}} = \frac{1}{{120.\frac{1}{{7200\pi }}}} = 60\pi \)
Thay \({I_0} = \frac{{{U_0}}}{{120}}\) vào (1), ta được: \(\frac{{{{\left( {60\sqrt 2 } \right)}^2}}}{{U_0^2}} + \frac{{{{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2}}}{{\frac{{U_0^2}}{{{{120}^2}}}}} = 1\,\, \Rightarrow {U_0} = 120V\)
\( \Rightarrow u = 120\cos \left( {60\pi t + \frac{\pi }{4}} \right)V\)
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là
Câu 2:
Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng
Câu 3:
Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?
Câu 4:
Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng
Câu 5:
Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x} + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}} + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là
Câu 6:
Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng
Câu 7:
về câu hỏi!