Câu hỏi:
24/07/2024 149
Axit nuclêic có thể có dạng mạch kép (tx) hoặc dạng mạch đơn (xx). Bảng dưới đây cho thấy thành phần các bazơ nitơ (nuclêôtit) của bốn mẫu nuclêôtit khác nhau. Bốn mẫu nuclêôtit này có thể thuộc trường hợp nào sau đây?
Mẫu
Tỉ lệ % các loại bazơ nitơ
A
T
G
X
U
1
40
40
10
10
0
2
10
40
40
10
0
3
40
0
40
10
10
4
40
0
20
10
30
Axit nuclêic có thể có dạng mạch kép (tx) hoặc dạng mạch đơn (xx). Bảng dưới đây cho thấy thành phần các bazơ nitơ (nuclêôtit) của bốn mẫu nuclêôtit khác nhau. Bốn mẫu nuclêôtit này có thể thuộc trường hợp nào sau đây?
Mẫu |
Tỉ lệ % các loại bazơ nitơ |
||||
A |
T |
G |
X |
U |
|
1 |
40 |
40 |
10 |
10 |
0 |
2 |
10 |
40 |
40 |
10 |
0 |
3 |
40 |
0 |
40 |
10 |
10 |
4 |
40 |
0 |
20 |
10 |
30 |
Quảng cáo
Trả lời:
Mẫu (1) và (2) không có U, có T → Mẫu (1) và (2) là ADN → A và B sai.
Mẫu (3) và (4) không có T, có U → Mẫu (3) và (4) là ARN.
Mẫu (1) có A = T, G = X → Mẫu (1) có thể là ADN mạch kép.
Mẫu (2) có A ≠ T, G ≠ X → Mẫu (2) là ADN mạch đơn.
Mẫu (3) và (4) có A ≠ U, G ≠ X → Mẫu (3) và (4) là ARN mạch đơn.
Chọn D.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trên giao tuyến \(\Delta \) của hai mặt phẳng \((P),\,\,(Q)\) ta lấy lần lượt 2 điểm \[A,\,\,B\] như sau:
• Lấy \(A\left( {x\,;\,\,y\,;\,\,1} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x - y = 0}\\{x + 2y = 0}\end{array} \Rightarrow x = y = 0 \Rightarrow A\left( {0\,;\,\,0\,;\,\,1} \right)} \right..\)
• Lấy \(B\left( { - 1\,;\,\,y\,;\,\,z} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{y + z = 0}\\{2y + z = 2}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{y = 2}\\{z = - 2}\end{array} \Rightarrow B\left( { - 1\,;\,\,2\,;\,\, - 2} \right)} \right.} \right..\)
Vì \(\Delta \in (\alpha )\) nên \(A,\,\,B \in (\alpha ).\) Do đó, ta có: \(\left\{ {\begin{array}{*{20}{l}}{2 + b = 0}\\{ - a + b - 6 = 0}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 8}\\{b = - 2}\end{array}} \right.} \right..\)
Vậy \(a + 4b = - 8 + 4 \cdot \left( { - 2} \right) = - 16.\) Chọn A.
Lời giải
Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).
Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.
Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.