Câu hỏi:
24/07/2024 3,752
Cho hai đường tròn (O) và (O’) có bán kính bằng nhau, cắt nhau tại A và B. Chứng minh tứ giác OAO’B là hình thoi; từ đó, suy ra AB cắt OO’ tại trung điểm của mỗi đường.
Cho hai đường tròn (O) và (O’) có bán kính bằng nhau, cắt nhau tại A và B. Chứng minh tứ giác OAO’B là hình thoi; từ đó, suy ra AB cắt OO’ tại trung điểm của mỗi đường.
Quảng cáo
Trả lời:
Tứ giác OAO’B có OA = OB = O’A = O’B (cùng bằng bán kính của (O) và (O’))
Suy ra tứ giác OAO’B là hình thoi.
Do đó hai đường chéo AB và OO’ cắt nhau tại trung điểm của mỗi đường.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì A, B ∈ (O; 3 cm) nên OA = OB = 3 cm.
Do đó ∆OAB cân tại O, suy ra (1)
Vì A, C ∈ (O’; 2 cm) nên O’A = O’C = 2 cm.
Do đó ∆O’AC cân tại O’, suy ra (2)
Mà (đối đỉnh) (3)
Từ (1), (2), (3) suy ra hay
Mà hai góc này ở vị trí so le trong nên OB // O’C.
b) Vì OB // O’C nên theo định lí Thalès ta có hay
Do đó
Lời giải
Gọi H là giao điểm của OO’ với AB (hình vẽ).
Ta có OA = OB (bán kính đường tròn tâm O) và O’A = O’B (bán kính đường tròn tâm O’)
Suy ra OO’ là đường trung trực của đoạn thẳng AB.
Do đó OO’ ⊥ AB tại trung điểm H của AB.
Đặt OH = x (cm) thì O’H = OO’ – OH = 21 ‒ x (cm).
Xét ∆OAH vuông tại H, theo định lí Pythagore, ta có:
OA2 = AH2 + OH2, suy ra AH2 = OA2 ‒ OH2.
Xét ∆O’AH vuông tại H, theo định lí Pythagore, ta có:
O’A2 = AH2 + O’H2, suy ra AH2 = O’A2 ‒ O’H2.
Do đó OA2 ‒ OH2 = O’A2 ‒ O’H2
Suy ra: 172 ‒ x2 = 102 ‒ (21 ‒ x)2
289 – x2 = 100 – 441 + 42x – x2
42x = 630
x = 15 (cm).
Do đó AH2 = OA2 ‒ OH2 = 172 – x2 = 172 – 152 = 64.
Suy ra
Mà H là trung điểm của AB nên AB = 2AH = 2.8 = 16 cm.
Vậy AB = 16 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.