Câu hỏi:

31/07/2024 2,589

Cho hình vuông \({C_1}\) có cạnh bằng \(1,\,\,{C_2}\) là hình vuông có các đỉnh là trung điểm của cạnh hình vuông \({C_1}.\) Tương tự, gọi \({C_3}\) là hình vuông có các đỉnh là trung điểm của các cạnh hình vuông \({C_2}.\) Cứ tiếp tục như vậy ta được một dãy các hình vuông \({C_1},\,\,{C_2},\,\,{C_3},\,\, \ldots ,\,\,{C_n},\, \ldots \) Tổng diện tích của 10 hình vuông đầu tiên của dãy bằng 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hình vuông thứ nhất có diện tích là \({S_1} = {1^2} = 1 = {\left( {\frac{1}{2}} \right)^{1 - 1}}.\)

Hình vuông thứ hai có diện tích là \({S_2} = {\left( {\frac{{\sqrt 2 }}{2} \cdot 1} \right)^2} = \frac{1}{2} = {\left( {\frac{1}{2}} \right)^{2 - 1}}.\)

Hình vuông thứ ba có diện tích là: \({S_3} = {\left[ {{{\left( {\frac{{\sqrt 2 }}{2}} \right)}^2}.1} \right]^2} = {\left( {\frac{{\sqrt 2 }}{2}} \right)^4} = \frac{1}{4} = {\left( {\frac{1}{2}} \right)^{3 - 1}}{\rm{. }}\)

.........

Hình vuông thứ \(n\) có diện tích là \({S_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}.\)

Do đó, tổng diện tích của 10 hình vuông đầu tiên bằng

\(S = {S_1} + {S_2} +  \ldots  + {S_{10}} = {\left( {\frac{1}{2}} \right)^0} + {\left( {\frac{1}{2}} \right)^1} + {\left( {\frac{1}{2}} \right)^2} +  \ldots  + {\left( {\frac{1}{2}} \right)^9} = \frac{{{2^{10}} - 1}}{{{2^9}}}.\)

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo quyết định của Hội nghị lanta (2-1945), Đông Âu thuộc phạm vi ảnh hưởng của Liên Xô. Chọn C.

Câu 2

Lời giải

Muốn phát triển du lịch thì tài nguyên du lịch là quan trọng nhất, các yếu tố khác chỉ là yếu tố bổ sung. Chọn C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP