Câu hỏi:

31/07/2024 67

Trên mặt phẳng toạ độ \[Oxy,\] cho đường thẳng \(d:2x + 4y + 1 = 0.\) Đường thẳng \(d'\) song song với đường thẳng \(d\) và tạo với tia \[Ox,\,\,Oy\] một tam giác có diện tích bằng 1. Phương trình tổng quát của đường thẳng \(d'\) là 

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do đường thẳng \(d'\) song song với đường thẳng \(d\) nên phương trình của đường thẳng \(d'\) là \(2x + 4y + m = 0\,\,\left( {m \ne 1} \right)\).

Giả sử \(d'\) cắt tia \[Ox\,,\,\,Oy\] lần lượt tại \(A\left( { - \frac{m}{2}\,;\,\,0} \right)\) và \(B\left( {0\,;\,\, - \frac{m}{4}} \right)\,\,\,\,\left( {m < 0} \right)\).

Theo bài, diện tích tam giác \[OAB\] bằng 1 nên:

\(\frac{1}{2} \cdot \left( { - \frac{m}{2}} \right) \cdot \left( { - \frac{m}{4}} \right) = 1 \Leftrightarrow \frac{{{m^2}}}{{16}} = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 4}&{(KTM)}\\{m = - 4}&{(TM)}\end{array}.} \right.\)

Với \(m = - 4\), ta được phương trình của đường thẳng \(d'\) là: \(x + 2y - 2 = 0\).

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Theo quyết định của Hội nghị Ianta (2-1945), Mĩ không được phân chia phạm vi hành hưởng ở địa bàn nào sau đây? 

Xem đáp án » 31/07/2024 10,611

Câu 2:

Polymer được điều chế bằng phản ứng trùng hợp là 

Xem đáp án » 31/07/2024 2,922

Câu 3:

Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = {x^3} - 3{x^2}\) cắt đường thẳng \(y = m\) tại ba điểm phân biệt. 

Xem đáp án » 31/07/2024 2,145

Câu 4:

Cho hàm số \(y = \frac{{{x^2} - x - 2}}{{x - 3}}\) có đồ thị \(\left( C \right).\) Có bao nhiêu tiếp tuyến của đồ thị \(\left( C \right)\) đi qua điểm \(A\left( {4\,;\,\,1} \right)?\)

Đáp án: ……….

Xem đáp án » 31/07/2024 1,253

Câu 5:

Nhân tố nào đóng vai trò quan trọng nhất đế Đà Năng trở thành trung tâm du lịch quốc gia của cả nước? 

Xem đáp án » 31/07/2024 1,158

Câu 6:

Biết \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} - 3x + 1} - ax - b} \right) = 0\) với \[a\,,\,\,b\] là các số hữu t. Tính \(a - 4b.\)

Đáp án: ……….

Xem đáp án » 31/07/2024 1,144

Câu 7:

Hình phẳng giới hạn bởi hai đồ thị \(y = \left| x \right|\) và \(y = {x^2}\) quay quanh trục tung tạo nên một vật thể tròn xoay có thể tích bằng 

Xem đáp án » 31/07/2024 1,024

Bình luận


Bình luận