Câu hỏi:

31/07/2024 126

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = a\), đường thẳng \(AB'\) tạo với mặt phẳng \(\left( {BCC'B'} \right)\) một góc \(30^\circ .\) Thể tích \(V\) của khối lăng trụ đã cho là 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = a\), đường thẳng \(AB'\) tạo với mặt phẳng \(\left( {BCC'B'} \right)\) một góc \(30^\circ .\)  (ảnh 1)

Gọi \(M\) là trung điểm của \(AB \Rightarrow AM \bot BC.\)

Vì \(ABC.A'B'C'\) là lăng trụ đứng \( \Rightarrow BB' \bot (ABC) \Rightarrow BB' \bot AM.\)

Suy ra \(AM \bot \left( {BCC'B'} \right) \Rightarrow \left( {AB',\,\,\left( {BCC'B'} \right)} \right) = \widehat {AB'M} = 30^\circ .\)

Tam giác \(AB'M\) vuông tại \(M\) có \(\sin \widehat {AB'M} = \frac{{AM}}{{AB'}} \Rightarrow AB' = a\sqrt 3 .\)

Tam giác \(AA'B'\) vuông tại \(A'\) có \(AA' = \sqrt {A{{B'}^2} - A'{{B'}^2}}  = a\sqrt 2 .\)

Thể tích khối lăng trụ \(ABC.A'B'C'\) là:

\({V_{ABC.A'B'C'}} = AB' \cdot {S_{ABC}} = a\sqrt 2  \cdot \frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 6 }}{4}.\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo quyết định của Hội nghị lanta (2-1945), Đông Âu thuộc phạm vi ảnh hưởng của Liên Xô. Chọn C.

Câu 2

Lời giải

Muốn phát triển du lịch thì tài nguyên du lịch là quan trọng nhất, các yếu tố khác chỉ là yếu tố bổ sung. Chọn C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP