Trong không gian \[Oxyz,\] cho mặt phẳng \(\left( P \right):x + 2y + z - 4 = 0\) và đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{1} = \frac{{z + 2}}{3}.\) Phương trình đường thẳng \(\Delta \) nằm trong mặt phẳng \(\left( P \right)\), đồng thời cắt và vuông góc với đường thẳng \[d\] là
Quảng cáo
Trả lời:

Phương trình tham số đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 2t}\\{y = t}\\{z = - 2 + 3t}\end{array}} \right.\).
Đường thẳng \(d\) cắt \(\left( P \right)\) tại \(M\left( { - 1 + 2t\,;\,\,t\,;\,\, - 2 + 3t} \right)\).
Suy ra \(\left( { - 1 + 2t} \right) \cdot 1 + t \cdot 2 + \left( { - 2 + 3t} \right) \cdot 1 - 4 = 0\)\( \Rightarrow t = 1 \Rightarrow M\left( {1\,;\,\,1\,;\,\,1} \right).\)
Vì \(\Delta \) nằm trong mặt phẳng \(\left( P \right)\) nên \({\vec u_\Delta } \bot {\vec n_{\left( P \right)}}\).
Vì \(\Delta \) vuông góc với \(d\) nên \({\vec u_\Delta } \bot {\vec u_d}\).
Suy ra \(\overrightarrow {{u_\Delta }} = \left[ {\overrightarrow {{n_{\left( P \right)}}} ,\,\,\overrightarrow {{u_d}} } \right] = \left( { - \frac{5}{3}\,;\,\,\frac{1}{3}\,;\,\,1} \right) \Rightarrow \Delta :\frac{{x - 1}}{5} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{{ - 3}}.\) Chọn A.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Theo quyết định của Hội nghị lanta (2-1945), Đông Âu thuộc phạm vi ảnh hưởng của Liên Xô. Chọn C.
Câu 2
Lời giải
Ta có \(y = {x^3} - 3{x^2} \Rightarrow y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 2}\end{array}} \right..\)
Bảng biến thiên:

Dựa vào bảng biến thiên ta thấy đồ thị hàm số \(y = {x^3} - 3{x^2}\) cắt đường thẳng \(y = m\) tại ba điểm phân biệt khi \( - 4 < m < 0.\) Chọn B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.