Câu hỏi:
31/07/2024 146Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(f'\left( x \right) = {x^3} - 3x + 1 \Rightarrow f'\left( {2 - x} \right) = {\left( {2 - x} \right)^3} - 3\left( {2 - x} \right) + 1\)
\( \Rightarrow f'\left( {2 - x} \right) = - {x^3} + 6{x^2} - 9x + 3\)
Với \[y = f\left( {2 - x} \right) - (1 - m)x - 6\], ta có \(y' = - f'\left( {2 - x} \right) - 1 + m.\)
Hàm số \(y = f\left( {2 - x} \right) - \left( {1 - m} \right)x - 6\) nghịch biến trên \(\left( {2\,;\,\,3} \right)\)
\( \Leftrightarrow y' \le 0\,,\,\,\forall x \in \left( {2\,;\,\,3} \right)\)\( \Leftrightarrow - f'\left( {2 - x} \right) - 1 + m \le 0 \Leftrightarrow m \le 1 + f'\left( {2 - x} \right)\)
\( \Leftrightarrow m \le - {x^3} + 6{x^2} - 9x + 3 + 1 \Leftrightarrow m \le - {x^3} + 6{x^2} - 9x + 4\,,\,\,\forall x \in \left( {2\,;\,\,3} \right)\)
Xét hàm số \(h\left( x \right) = - {x^3} + 6{x^2} - 9x + 4\) với \(x \in \left( {2\,;\,\,3} \right).\)
Ta có \(h'\left( x \right) = - 3{x^2} + 12x - 9 > 0\,,\,\,\forall x \in \left( {2\,;\,\,3} \right).\)
Khi đó \({\min _{\left[ {2\,;\,\,3} \right]}}h\left( x \right) = h\left( 2 \right) = 2\) suy ra \(m \le 2.\)
Do \(m \in \left[ { - 5\,;\,\,5} \right]\) nên \(m \in \left\{ { - 5\,;\,\, - 4\,;\,\, - 3\,;\,\, - 2\,;\,\, - 1\,;\,\,0\,;\,\,1\,;\,\,2} \right\}.\)
Vậy có 8 giá trị nguyên của \(m\) thỏa mãn yêu cầu. Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hàm số \(y = \frac{{{x^2} - x - 2}}{{x - 3}}\) có đồ thị \(\left( C \right).\) Có bao nhiêu tiếp tuyến của đồ thị \(\left( C \right)\) đi qua điểm \(A\left( {4\,;\,\,1} \right)?\)
Đáp án: ……….
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!