Câu hỏi:
31/07/2024 39Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(f'\left( x \right) + \left( {2x - 1} \right){\left[ {f\left( x \right) - x} \right]^2} = 1 \Leftrightarrow f'\left( x \right) - 1 = - \left( {2x - 1} \right){\left[ {f\left( x \right) - x} \right]^2}\)
Đặt \(g\left( x \right) = f\left( x \right) - x \Leftrightarrow g'\left( x \right) = f'\left( x \right) - 1\), do đó \(g'\left( x \right) = - \left( {2x - 1} \right){g^2}\left( x \right)\)
\( \Leftrightarrow - \frac{{g'\left( x \right)}}{{{g^2}\left( x \right)}} = 2x - 1 \Leftrightarrow \int - \frac{{g'\left( x \right)}}{{{g^2}\left( x \right)}}{\rm{d}}x = \int {\left( {2x - 1} \right){\rm{d}}x} \)
\( \Leftrightarrow \frac{1}{{g\left( x \right)}} = {x^2} - x + C \Leftrightarrow \frac{1}{{f\left( x \right) - x}} = {x^2} - x + C\)
Mà \[f\left( 0 \right) = 1\] nên \(\frac{1}{{f\left( 0 \right) - 0}} = C \Leftrightarrow C = 1.\)
Do đó \[f\left( x \right) = x + \frac{1}{{{x^2} - x + 1}} \Rightarrow S = f\left( 1 \right) + f\left( 2 \right) = 2 + \frac{7}{3} = \frac{{13}}{3}.\]
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hàm số \(y = \frac{{{x^2} - x - 2}}{{x - 3}}\) có đồ thị \(\left( C \right).\) Có bao nhiêu tiếp tuyến của đồ thị \(\left( C \right)\) đi qua điểm \(A\left( {4\,;\,\,1} \right)?\)
Đáp án: ……….
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!