Câu hỏi:
31/07/2024 51Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Số tự nhiên có 4 chữ số khác nhau là \(A_7^4 = 840 \Rightarrow n(\Omega ) = 840.\)
Biến cố A "số được chọn không có hai chữ số liên tiếp nào cùng chẵn".
TH1: Số được chọn có 4 chữ số đều là số lẻ, có \(4! = 24\) cách chọn.
TH2: Số được chọn có 1 chữ số chẵn và 3 chữ số lẻ
Có \(C_3^1\) cách chọn 1 chữ số chẵn và \(C_4^3\) cách chọn 3 chữ số lẻ.
Đồng thời có \[4!\] cách sắp xếp 4 số được chọn
Nên có \(C_3^1 \cdot C_4^3 \cdot 4! = 288\) cách chọn thỏa mãn.
TH3: Số được chọn có 2 chữ số chẵn và 2 chữ số lẻ.
Chọn 2 số chẵn, 2 số lẻ trong tập hợp \(\left\{ {1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7} \right\}\) có \(C_3^2 \cdot C_4^2\) cách.
Với mỗi bộ 2 số chẵn và 2 số lẻ được chọn, để hai số chẵn không đứng cạnh nhau thì ta có các trường hợp CLCL, CLLC, LCLC.
Với mỗi trường hợp trên ta có \[2!\] cách sắp xếp 2 số lẻ và \[2!\] cách sắp xếp các số chẵn nên có 3.2!.2! số thỏa mãn.
Suy ra trường hợp 3 có \(C_3^2 \cdot C_4^2 \cdot 12 = 216\) (cách chọn).
Suy ra \(n(A) = 24 + 288 + 216 = 528.\)
Vậy xác suất cần tìm là \(P = \frac{{n(A)}}{{n(\Omega )}} = \frac{{528}}{{840}} = \frac{{22}}{{35}}.\) Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hàm số \(y = \frac{{{x^2} - x - 2}}{{x - 3}}\) có đồ thị \(\left( C \right).\) Có bao nhiêu tiếp tuyến của đồ thị \(\left( C \right)\) đi qua điểm \(A\left( {4\,;\,\,1} \right)?\)
Đáp án: ……….
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!