Câu hỏi:

31/07/2024 203

Gọi \(S\) là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp \(\left\{ {1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7} \right\}.\) Chọn ngẫu nhiên một số thuộc \[S,\] xác suất để số đó không có hai chữ số liên tiếp nào cũng là số chẵn bằng 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số tự nhiên có 4 chữ số khác nhau là \(A_7^4 = 840 \Rightarrow n(\Omega ) = 840.\)

Biến cố A "số được chọn không có hai chữ số liên tiếp nào cùng chẵn".

TH1: Số được chọn có 4 chữ số đều là số lẻ, có \(4! = 24\) cách chọn.

TH2: Số được chọn có 1 chữ số chẵn và 3 chữ số lẻ

Có \(C_3^1\) cách chọn 1 chữ số chẵn và \(C_4^3\) cách chọn 3 chữ số lẻ.

Đồng thời có \[4!\] cách sắp xếp 4 số được chọn

Nên có \(C_3^1 \cdot C_4^3 \cdot 4! = 288\) cách chọn thỏa mãn.

TH3: Số được chọn có 2 chữ số chẵn và 2 chữ số lẻ.

Chọn 2 số chẵn, 2 số lẻ trong tập hợp \(\left\{ {1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7} \right\}\) có \(C_3^2 \cdot C_4^2\) cách.

Với mỗi bộ 2 số chẵn và 2 số lẻ được chọn, để hai số chẵn không đứng cạnh nhau thì ta có các trường hợp CLCL, CLLC, LCLC.

Với mỗi trường hợp trên ta có \[2!\] cách sắp xếp 2 số lẻ và \[2!\] cách sắp xếp các số chẵn nên có 3.2!.2! số thỏa mãn.

Suy ra trường hợp 3 có \(C_3^2 \cdot C_4^2 \cdot 12 = 216\) (cách chọn).

Suy ra \(n(A) = 24 + 288 + 216 = 528.\)

Vậy xác suất cần tìm là \(P = \frac{{n(A)}}{{n(\Omega )}} = \frac{{528}}{{840}} = \frac{{22}}{{35}}.\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo quyết định của Hội nghị lanta (2-1945), Đông Âu thuộc phạm vi ảnh hưởng của Liên Xô. Chọn C.

Câu 2

Lời giải

Muốn phát triển du lịch thì tài nguyên du lịch là quan trọng nhất, các yếu tố khác chỉ là yếu tố bổ sung. Chọn C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP