Câu hỏi:

31/07/2024 442 Lưu

Cho hình chóp đều \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \(a\), cạnh bên hợp với đáy một góc bằng \(60^\circ .\) Kí hiệu \({V_1},\,\,{V_2}\) lần lượt là thể tích khối cầu ngoại tiếp, thể tích khối nón ngoại tiếp hình chóp đã cho. Tỉ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp đều \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \(a\), cạnh bên hợp với đáy một góc bằng \(60^\circ .\) Kí hiệu \({V_1},\,\,{V_2}\) l (ảnh 1)

Gọi \[O\] là tâm hình vuông \[ABCD.\] Suy ra \(SO \bot \left( {ABCD} \right).\)

Và góc giữa cạnh bên SA với mặt đáy \[\left( {ABCD} \right)\] là \(\widehat {SAO}.\)

Theo giả thiết \(\widehat {SAO} = 60^\circ \) nên \[\Delta SAC\] đều \( \Rightarrow SA = a\sqrt 2 \) và \(SO = \frac{{a\sqrt 6 }}{2}.\)

Gọi \(M\) là trung điểm \[SA.\] Trong \(\left( {SAC} \right)\), đường trung trực của cạnh \[SA\] cắt \[SO\] tại \[I.\]

Khi đó, \(I = IA = IB = IC = ID\) nên \(I\) là tâm của mặt cầu ngoại tiếp hình chóp \[S.ABCD.\]

Tam giác \[SAO\] có \(SI \cdot SO = SM \cdot SA \Rightarrow SI = \frac{{S{A^2}}}{{2SO}} = \frac{{a\sqrt 6 }}{3} = R.\)

Ta lại có, khối nón ngoại tiếp hình chóp có đường tròn đáy ngoại tiếp hình vuông \[ABCD\] nên có bán kính đáy \(r = \frac{{a\sqrt 2 }}{2}\) và chiều cao \(h = SO = \frac{{a\sqrt 6 }}{2}.\)

Suy ra \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{4}{3} \cdot \pi {{\left( {\frac{{a\sqrt 6 }}{3}} \right)}^3}}}{{\frac{1}{3}\pi {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}\frac{{a\sqrt 6 }}{2}}} = \frac{{32}}{9}.\) Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo quyết định của Hội nghị lanta (2-1945), Đông Âu thuộc phạm vi ảnh hưởng của Liên Xô. Chọn C.

Câu 2

Lời giải

Muốn phát triển du lịch thì tài nguyên du lịch là quan trọng nhất, các yếu tố khác chỉ là yếu tố bổ sung. Chọn C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP