Câu hỏi:
31/07/2024 80Biết \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} - 3x + 1} - ax - b} \right) = 0\) với \[a\,,\,\,b\] là các số hữu tỉ. Tính \(a - 4b.\)
Đáp án: ……….
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} - 3x + 1} - ax - b} \right) = 0\)\( \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \frac{{4{x^2} - 3x + 1 - {{(ax + b)}^2}}}{{\sqrt {4{x^2} - 3x + 1} + ax + b}} = 0\)
\( \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \frac{{4{x^2} - 3x + 1 - {a^2}{x^2} - 2abx - {b^2}}}{{\sqrt {4{x^2} - 3x + 1} + ax + b}} = 0\)\( \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {4 - {a^2}} \right){x^2} - (3 + 2ab)x + 1 - {b^2}}}{{\sqrt {4{x^2} - 3x + 1} + ax + b}} = 0\)
Do đó \(\left\{ {\begin{array}{*{20}{l}}{4 - {a^2} = 0}\\{a > 0}\\{3 + 2ab = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{4b = - 3}\end{array} \Leftrightarrow a - 4b = 5} \right.} \right..\)
Đáp án: 5.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hàm số \(y = \frac{{{x^2} - x - 2}}{{x - 3}}\) có đồ thị \(\left( C \right).\) Có bao nhiêu tiếp tuyến của đồ thị \(\left( C \right)\) đi qua điểm \(A\left( {4\,;\,\,1} \right)?\)
Đáp án: ……….
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!