Câu hỏi:
31/07/2024 65Có 12 học sinh giỏi gồm 3 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh trong số học sinh giỏi đó sao cho mỗi khối có ít nhất 1 học sinh?
Đáp án: ……….
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Số cách chọn 6 học sinh bất kì trong 12 học sinh là \(C_{12}^6\) cách.
Số cách chọn 6 học sinh mà trong đó không có học sinh khối 10 là \(C_7^6\) cách.
Số cách chọn 6 học sinh mà trong đó không có học sinh khối 11 là \(C_8^6\) cách.
Số cách chọn 6 học sinh mà trong đó không có học sinh khối 12 là \(C_9^6\) cách.
Vậy có \(C_{12}^6 - \left( {C_7^6 + C_8^6 + C_9^6} \right) = 805\) cách chọn thỏa mãn yêu cầu bài toán.
Đáp án: 805.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Cho hàm số \(y = \frac{{{x^2} - x - 2}}{{x - 3}}\) có đồ thị \(\left( C \right).\) Có bao nhiêu tiếp tuyến của đồ thị \(\left( C \right)\) đi qua điểm \(A\left( {4\,;\,\,1} \right)?\)
Đáp án: ……….
Câu 5:
Câu 6:
Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
về câu hỏi!