Câu hỏi:

31/07/2024 65

Có 12 học sinh giỏi gồm 3 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh trong số học sinh giỏi đó sao cho mỗi khối có ít nhất 1 học sinh?

Đáp án: ……….

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số cách chọn 6 học sinh bất kì trong 12 học sinh là \(C_{12}^6\) cách.

Số cách chọn 6 học sinh mà trong đó không có học sinh khối 10 là \(C_7^6\) cách.

Số cách chọn 6 học sinh mà trong đó không có học sinh khối 11 là \(C_8^6\) cách.

Số cách chọn 6 học sinh mà trong đó không có học sinh khối 12 là \(C_9^6\) cách.

Vậy có \(C_{12}^6 - \left( {C_7^6 + C_8^6 + C_9^6} \right) = 805\) cách chọn thỏa mãn yêu cầu bài toán.

Đáp án: 805.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Theo quyết định của Hội nghị Ianta (2-1945), Mĩ không được phân chia phạm vi hành hưởng ở địa bàn nào sau đây? 

Xem đáp án » 31/07/2024 9,344

Câu 2:

Polymer được điều chế bằng phản ứng trùng hợp là 

Xem đáp án » 31/07/2024 2,235

Câu 3:

Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = {x^3} - 3{x^2}\) cắt đường thẳng \(y = m\) tại ba điểm phân biệt. 

Xem đáp án » 31/07/2024 2,030

Câu 4:

Cho hàm số \(y = \frac{{{x^2} - x - 2}}{{x - 3}}\) có đồ thị \(\left( C \right).\) Có bao nhiêu tiếp tuyến của đồ thị \(\left( C \right)\) đi qua điểm \(A\left( {4\,;\,\,1} \right)?\)

Đáp án: ……….

Xem đáp án » 31/07/2024 1,189

Câu 5:

Hiệp hội các quốc gia Đông Nam Á (ASEAN) được thành lập năm 1967 trong bối cảnh 

Xem đáp án » 31/07/2024 731

Câu 6:

Chỉ ra phương thức biểu đạt chính được sử dụng trong đoạn thơ trên. 

Xem đáp án » 31/07/2024 613

Câu 7:

Cho cân bằng hóa học: N2  (g)+3H2  (g)2NH3  (g);             ΔH<0
Cân bằng trên chuyển dịch theo chiều thuận khi

Xem đáp án » 31/07/2024 578

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store