Câu hỏi:

19/08/2025 356 Lưu

Có 12 học sinh giỏi gồm 3 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh trong số học sinh giỏi đó sao cho mỗi khối có ít nhất 1 học sinh?

Đáp án: ……….

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số cách chọn 6 học sinh bất kì trong 12 học sinh là \(C_{12}^6\) cách.

Số cách chọn 6 học sinh mà trong đó không có học sinh khối 10 là \(C_7^6\) cách.

Số cách chọn 6 học sinh mà trong đó không có học sinh khối 11 là \(C_8^6\) cách.

Số cách chọn 6 học sinh mà trong đó không có học sinh khối 12 là \(C_9^6\) cách.

Vậy có \(C_{12}^6 - \left( {C_7^6 + C_8^6 + C_9^6} \right) = 805\) cách chọn thỏa mãn yêu cầu bài toán.

Đáp án: 805.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo quyết định của Hội nghị lanta (2-1945), Đông Âu thuộc phạm vi ảnh hưởng của Liên Xô. Chọn C.

Câu 2

A. \(m \in \left( { - \infty \,;\,\, - 4} \right).\) 
B. \(m \in \left( { - 4\,;\,\,0} \right).\) 
C. \(m \in \left( {0\,;\,\, + \infty } \right).\) 
D. \(m \in \left( { - \infty \,;\,\, - 4} \right) \cup \left( {0\,;\,\, + \infty } \right).\)

Lời giải

Ta có \(y = {x^3} - 3{x^2} \Rightarrow y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 2}\end{array}} \right..\)

Bảng biến thiên:

Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = {x^3} - 3{x^2}\) cắt đường thẳng \(y = m\) tại ba điểm phân biệt. 	 (ảnh 1)

Dựa vào bảng biến thiên ta thấy đồ thị hàm số \(y = {x^3} - 3{x^2}\) cắt đường thẳng \(y = m\) tại ba điểm phân biệt khi \( - 4 < m < 0.\) Chọn B.

Câu 3

A. Do có lịch sử khai thác lâu đời. 
B. Có nhiều công trình kiến trúc nổi tiếng. 
C. Tài nguyên du lịch đa dạng. 
D. Mức sống người dân ngày càng cao.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. polyacrylonitrile. 
B. poly(ethylene-terephthalate). 
C. nylon-6,6. 
D. cellulose triacetate.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP