Câu hỏi:
31/07/2024 35Xét các số phức \(z\) thoả mãn \(\left| {z - 2 - 3i} \right| = 1.\) Gọi \[M\] và \[m\] lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = \left| {\bar z + 1 + i} \right|.\) Tính tích \[M \cdot m.\]
Đáp án: ……….Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \[P = \left| {\bar z + 1 + i} \right| = \left| {\overline {\bar z + 1 + i} } \right| = \left| {z + 1 - i} \right|\].
Suy ra \(P = \left| {\left( {z - 2 - 3i} \right) + 3 + 2i} \right| = \left| {w - \left( { - 3 - 2i} \right)} \right|\) với \(w = z - 2 - 3i.\)
Khi đó \(\left| {\left| w \right| - \left| { - 3 - 2i} \right|} \right| \le \left| {w - \left( { - 3 - 2i} \right)} \right| \le \left| w \right| - \left| { - 3 - 2i} \right|\)
\( \Leftrightarrow \sqrt {13} - 1 \le \left| {w - \left( { - 3 - 2i} \right)} \right| \le \sqrt {13} + 1 \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\min P = \sqrt {13} - 1}\\{\max P = \sqrt {13} + 1}\end{array}} \right.\).
Vậy \(M \cdot m = \left( {\sqrt {13} + 1} \right) \cdot \left( {\sqrt {13} - 1} \right) = 13 - 1 = 12.\)
Đáp án: 12.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hàm số \(y = \frac{{{x^2} - x - 2}}{{x - 3}}\) có đồ thị \(\left( C \right).\) Có bao nhiêu tiếp tuyến của đồ thị \(\left( C \right)\) đi qua điểm \(A\left( {4\,;\,\,1} \right)?\)
Đáp án: ……….
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!