Một ô tô đang đứng và bắt đầu chuyển động theo một đường thẳng với gia tốc \[a\left( t \right) = 6 - 3t{\rm{ }}\left( {m/{s^2}} \right)\], trong đó \(t\) là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là
Quảng cáo
Trả lời:
Ta có: \[v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( {6 - 3t} \right)dt} = 6t - \frac{{3{t^2}}}{2} + C\].
Theo bài ra ta có: Ô tô đang đứng yên và bắt đầu chuyển động, do đó \[v\left( 0 \right) = 0\] \[ \Rightarrow C = 0\].
Khi đó ta có \[v\left( t \right) = 6t - \frac{3}{2}{t^2}\], đây là một parabol có bề lõm hướng xuống, đạt giá trị lớn nhất tại \[t = \frac{{ - b}}{{2a}} = \frac{{ - 6}}{{2 \cdot \left( { - \frac{3}{2}} \right)}} = 2\].
Vậy quãng đường ô tô đi được từ khi chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là: \[S = \int\limits_0^2 {v\left( t \right)dt} = \int\limits_0^2 {\left( {6t - \frac{3}{2}{t^2}} \right)dt} = 8{\mkern 1mu} {\mkern 1mu} \,\left( m \right)\]. Chọn D.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Trong không gian tọa độ \[Oxyz,\] cho mặt cầu và điểm \[M\] thay đổi trên mặt cầu. Giá trị lớn nhất của độ dài đoạn thẳng \[OM\] là A. 12. B. 3. C. 9. D. 6. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/08/blobid8-1722729182.png)
Mặt cầu \(\left( S \right)\) có tâm \(I\left( { - 2\,;\,\,1\,;\,\,2} \right)\), bán kính \(R = 3.\)
Với \(M \in \left( S \right)\) ta có \(O{M_{\max }} = OI + R = \sqrt {{{\left( { - 2} \right)}^2} + {1^2} + {2^2}} + 3 = 6\).
Chọn D.Lời giải
Điểm M là vị trí trùng nhau của hai ánh sáng.
\[{x_M} = {k_1}\frac{{{\lambda _1}D}}{a} \Rightarrow 5,6 = {k_1}\frac{{0,4.2}}{1} \Rightarrow {k_1} = 7\]
Hai vân sáng trùng nhau tại M thoả mãn: \[\frac{{{k_1}}}{{{k_2}}} = \frac{{{\lambda _2}}}{{{\lambda _1}}} \Rightarrow \frac{7}{{{k_2}}} = \frac{{{\lambda _2}}}{{0,4}} \Rightarrow {\lambda _2} = \frac{{2,8}}{{{k_2}}}\mu m\]
Mà \[0,5\mu {\rm{m}} \le {\lambda _2} \le 0,65\mu {\rm{m}} \Rightarrow 0,5 \le \frac{{2,8}}{{{k_2}}} \le 0,65 \Rightarrow 4,3 \le {k_2} \le 5,6 \Rightarrow {k_2} = 5\]
Vậy tại M thì vân sáng bậc 7 của bức xạ λ1 trùng với vân sáng bậc 5 của bức xạ λ2.
Do đó \[{\lambda _2} = \frac{{2,8}}{{{k_2}}} = \frac{{2,8}}{5} = 0,56\,\mu m\]
Tại vị trí điểm \(N\) cách vân trung tâm 8,96 mm có: ứng với vân sáng bậc 8 của bức xạ λ2.
Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.