Câu hỏi:
08/08/2024 46Giả sử một ca sĩ muốn thiết kế một phòng nghe, với một căn phòng vuông, ca sĩ bố trí 4 loa giống nhau có công suất 480 W, coi như nguồn điểm ở 4 góc tường, các bức vách được lắp xốp để chống phản xạ. Do một trong 4 loa phải nhường vị trí để đặt lọ hoa trang trí, ca sĩ này đã thay thế bằng một số loa nhỏ giống nhau có công suất bằng 1/8 loa ở góc tường và đặt vào trung điểm đường nối vị trí loa ở góc tường với tâm nhà, vậy phải đặt thêm bao nhiêu loa nhỏ để người ngồi ở tâm nhà nghe rõ như 4 loa đặt ở góc tường (bỏ qua giao thoa sóng âm)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Theo các dữ kiện bài cho ta có hình vẽ:
Giả sử thay loa lớn ở góc tường B bằng loa nhỏ đặt tại K (K là trung điểm của BO).
Để người ngồi ở tâm nhà nghe rõ như 4 loa đặt ở góc tường thì cường độ âm do 1 loa lớn tại B gây ra tại O bằng cường độ âm do n loa nhỏ gây ra tại O.
Ta có: \({{\rm{I}}_{{\rm{BO}}}} = {{\rm{I}}_{{\rm{KO }}}} \Rightarrow \frac{{\rm{P}}}{{4{\rm{\pi B}}{{\rm{O}}^2}}} = \frac{{{\rm{n}}\frac{1}{8}{\rm{P}}}}{{4{\rm{\pi K}}{{\rm{O}}^2}}} \Rightarrow \frac{1}{{{\rm{B}}{{\rm{O}}^2}}} = \frac{{\rm{n}}}{{8{{\left( {\frac{{{\rm{BO}}}}{2}} \right)}^2}}} \Rightarrow {\rm{n}} = 2\). Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x + 1} \right)\left( {{x^2} + 2mx + 5} \right),\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số đã cho có đúng một điểm cực trị?
Câu 2:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Hàm số \(g\left( x \right) = f'\left( {2x + 3} \right) + 2\) có đồ thị là một parabol với tọa độ đỉnh \(I\left( {2\,;\,\, - 1} \right)\) và đi qua điểm \(A\left( {1\,;\,\,2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng nào dưới đây?
Câu 3:
Phương trình \({\log _x}2 + {\log _2}x = \frac{5}{2}\) có hai nghiệm \({x_1},{x_2}\,\,\left( {{x_1} < {x_2}} \right).\) Khi đó, giá trị của \(x_1^2 + {x_2}\) bằng
Câu 4:
Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) có \(f'\left( { - 2} \right) = 3\) và \(g'\left( { - 4} \right) = 1.\) Đạo hàm của hàm số \(y = 2f\left( x \right) - 3g\left( {2x} \right)\) tại điểm \(x = - 2\) bằng
Câu 5:
Giá trị của tham số \(m\) để hàm số \(y = {x^4} - 2m{x^3} + m{x^2} - 1\) đồng biến trên khoảng \[\left( {1\,;\,\, + \infty } \right)\] là
Câu 6:
Một công ty trách nhiệm hữu hạn thực hiện việc trả lương cho các kỹ sư theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ty là \[13,5\] triệu đồng/quý, và kể từ quý làm việc thứ hai, mức lương sẽ được tăng thêm \[500\,\,000\] đồng mỗi quý. Tổng số tiền lương một kỹ sư nhận được sau ba năm làm việc cho công ty là
Câu 7:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = 12{x^2} + 2,\,\,\forall x \in \mathbb{R}\) và \(f\left( 1 \right) = 3.\) Biết \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 2\), khi đó \(F\left( 1 \right)\) bằng
về câu hỏi!