Câu hỏi:
08/08/2024 53Một lọ đựng dung dịch \({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3}\) (dung dịch X) để lâu ngày. Nồng độ \({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3}\) trong X được xác định lại như sau:
Thí nghiệm 1: thêm \(10{\rm{ml}}\) dung dịch Y gồm \({\rm{BaC}}{{\rm{l}}_2}0,6{\rm{M}}\) và \({\rm{HCl}}\,\,3,0{\rm{M}}\) vào \(5{\rm{ml}}\) dung dịch X thu được 0,2796 gam kết tủa trắng.
Thí nghiệm 2: thêm từ từ dung dịch nước bromine vào \(5{\rm{ml}}\) dung dịch X cho tới khi dung dịch có màu vàng nhạt bền, thêm tiếp \(10{\rm{ml}}\) dung dịch Y thì thu được 0,8388 gam kết tủa trắng.
Nồng độ \({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3}\) trong dung dịch X là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Dung dịch \({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3}\) để lâu ngày sẽ bị oxi hóa một phần thành\({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4} \Rightarrow \) trong lọ chứa \({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3}\) và \({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4}\).
Thí nghiệm 1:
\(2{\rm{HCl}} + {\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3} \to 2{\rm{NaCl}} + {{\rm{H}}_2}{\rm{O}} + {\rm{S}}{{\rm{O}}_2}\)
\({\rm{BaC}}{{\rm{l}}_2} + {\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4} \to {\rm{BaS}}{{\rm{O}}_4} \downarrow + \,2{\rm{NaCl}}\)
\( \to {{\rm{n}}_{{\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4}({\rm{TN1}})}} = {{\rm{n}}_{{\rm{BaS}}{{\rm{O}}_4}}} = \frac{{0,233}}{{233}} = 0,001\;{\rm{mol}}.\)
Thí nghiệm 2:
\({\rm{B}}{{\rm{r}}_2} + {\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3} + {{\rm{H}}_2}{\rm{O}} \to {\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4} + 2{\rm{HBr}}\)
\({\rm{BaC}}{{\rm{l}}_2} + {\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4} \to {\rm{BaS}}{{\rm{O}}_4} \downarrow + \,2{\rm{NaCl}}\)
\({{\rm{n}}_{{\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4}({\rm{TN}}2)}} = {{\rm{n}}_{{\rm{BaS}}{{\rm{O}}_4}}} = \frac{{0,699}}{{233}} = 0,003\;{\rm{mol}}\)
Nồng độ \({\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_3}\) trong dung dịch X là \( = \frac{{0,003 - 0,001}}{{0,005}} = 0,4{\rm{M}}\). Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x + 1} \right)\left( {{x^2} + 2mx + 5} \right),\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số đã cho có đúng một điểm cực trị?
Câu 2:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Hàm số \(g\left( x \right) = f'\left( {2x + 3} \right) + 2\) có đồ thị là một parabol với tọa độ đỉnh \(I\left( {2\,;\,\, - 1} \right)\) và đi qua điểm \(A\left( {1\,;\,\,2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng nào dưới đây?
Câu 3:
Phương trình \({\log _x}2 + {\log _2}x = \frac{5}{2}\) có hai nghiệm \({x_1},{x_2}\,\,\left( {{x_1} < {x_2}} \right).\) Khi đó, giá trị của \(x_1^2 + {x_2}\) bằng
Câu 4:
Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) có \(f'\left( { - 2} \right) = 3\) và \(g'\left( { - 4} \right) = 1.\) Đạo hàm của hàm số \(y = 2f\left( x \right) - 3g\left( {2x} \right)\) tại điểm \(x = - 2\) bằng
Câu 5:
Giá trị của tham số \(m\) để hàm số \(y = {x^4} - 2m{x^3} + m{x^2} - 1\) đồng biến trên khoảng \[\left( {1\,;\,\, + \infty } \right)\] là
Câu 6:
Một công ty trách nhiệm hữu hạn thực hiện việc trả lương cho các kỹ sư theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ty là \[13,5\] triệu đồng/quý, và kể từ quý làm việc thứ hai, mức lương sẽ được tăng thêm \[500\,\,000\] đồng mỗi quý. Tổng số tiền lương một kỹ sư nhận được sau ba năm làm việc cho công ty là
Câu 7:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = 12{x^2} + 2,\,\,\forall x \in \mathbb{R}\) và \(f\left( 1 \right) = 3.\) Biết \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 2\), khi đó \(F\left( 1 \right)\) bằng
về câu hỏi!