Câu hỏi:
08/08/2024 45Điện phân dung dịch hỗn hợp \({\rm{NaCl}}\) và 0,05 mol \({\rm{CuS}}{{\rm{O}}_4}\) bằng dòng điện một chiều có cường độ 2A (điện cực trơ, có màng ngăn). Sau thời gian t giây thì ngừng điện phân thu được khí ở hai điện cực có tổng thể tích là 2,85 lít (đkc) và dung dịch X. Dung dịch X hòa tan được tối đa 1,02 gam \({\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}.\) Giả sử hiệu suất điện phân là 100%, các khí thoát ra không tan trong dung dịch. Giá trị của t là
Đáp án: ……….
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\({{\rm{n}}_{{\rm{CuS}}{{\rm{O}}_4}}} = 0,05\,(\;{\rm{mol}}),{{\rm{n}}_{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}} = 0,01\,(\;{\rm{mol}}),\,{n_{kh\'i }} = \frac{{2,85}}{{24,79}} = 0,115\,(mol)\)
TH1: Giả sử \({\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}\) bị hòa tan là do \({\rm{O}}{{\rm{H}}^ - }\)
Ta có số mol khí ở hai điện cực: \({\rm{a}} + {\rm{b}} + {\rm{c}} = 0,115\) (1)
Bảo toàn electron: \(0,1 + 2{\rm{a}} = 2\;{\rm{b}} + 4{\rm{c}}\) (2)
\(\begin{array}{l}2O{H^ - } + A{l_2}{O_3} \to 2AlO_2^ - + {H_2}O\\0,02 \leftarrow 0,01\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(mol)\end{array}\)
\({{\rm{n}}_{{\rm{O}}{{\rm{H}}^ - }}} = 2{{\rm{n}}_{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}} = 0,02 = 2{\rm{a}} - 4{\rm{c}}\) (3)
Từ (1), (2), (3) \( \Rightarrow {\rm{a}} = 0,04;{\rm{b}} = 0,06;{\rm{c}} = 0,015.\)
\({{\rm{n}}_{\rm{c}}} = \frac{{{\rm{It}}}}{{\rm{F}}} \Rightarrow 0,1 + 2 \cdot 0,04 = \frac{{5{\rm{t}}}}{{96500}} \Rightarrow {\rm{t}} = 3474\;{\rm{s}}{\rm{.}}\)
TH2: Giả sử \({\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}\) bị hòa tan là do \({H^ + }\)
Làm tương tự và chỉ ra TH2 không thể xảy ra.
Đáp án: 3474
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x + 1} \right)\left( {{x^2} + 2mx + 5} \right),\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số đã cho có đúng một điểm cực trị?
Câu 2:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Hàm số \(g\left( x \right) = f'\left( {2x + 3} \right) + 2\) có đồ thị là một parabol với tọa độ đỉnh \(I\left( {2\,;\,\, - 1} \right)\) và đi qua điểm \(A\left( {1\,;\,\,2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng nào dưới đây?
Câu 3:
Phương trình \({\log _x}2 + {\log _2}x = \frac{5}{2}\) có hai nghiệm \({x_1},{x_2}\,\,\left( {{x_1} < {x_2}} \right).\) Khi đó, giá trị của \(x_1^2 + {x_2}\) bằng
Câu 4:
Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) có \(f'\left( { - 2} \right) = 3\) và \(g'\left( { - 4} \right) = 1.\) Đạo hàm của hàm số \(y = 2f\left( x \right) - 3g\left( {2x} \right)\) tại điểm \(x = - 2\) bằng
Câu 5:
Giá trị của tham số \(m\) để hàm số \(y = {x^4} - 2m{x^3} + m{x^2} - 1\) đồng biến trên khoảng \[\left( {1\,;\,\, + \infty } \right)\] là
Câu 6:
Một công ty trách nhiệm hữu hạn thực hiện việc trả lương cho các kỹ sư theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ty là \[13,5\] triệu đồng/quý, và kể từ quý làm việc thứ hai, mức lương sẽ được tăng thêm \[500\,\,000\] đồng mỗi quý. Tổng số tiền lương một kỹ sư nhận được sau ba năm làm việc cho công ty là
Câu 7:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = 12{x^2} + 2,\,\,\forall x \in \mathbb{R}\) và \(f\left( 1 \right) = 3.\) Biết \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 2\), khi đó \(F\left( 1 \right)\) bằng
về câu hỏi!