Câu hỏi:
22/08/2024 612Giả sử có một loại bệnh mà tỉ lệ người mắc bệnh là 0,01%. Nếu một người mắc bệnh thì xác suất xét nghiệm cho kết quả dương tính là 90%, nếu một người không mắc bệnh thì xác suất cho kết quả dương tính là 5%. Khi một người xét nghiệm có kết quả dương tính thì khả năng mắc bệnh của người đó là bao nhiêu phần trăm?
A. 0,01%.
B. 4,995%.
C. 0,1797%.
D. 0,001%.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Gọi M là biến cố: “Người đó mắc bệnh”;
D là biến cố: “Người đó có xét nghiệm dương tính”.
Ta có: P(M) = 0,01% = 0,0001 ⇒ P(\(\overline M \)) = 1 – 0,0001 = 0,9999.
Trong số những người không mắc bệnh nhưng có 5% số người có xét nghiệm dương tính nên P(D | \(\overline M \)) = 5% = 0,05.
Nếu một người mắc bệnh thì xác suất xét nghiệm cho kết quả dương tính là 90% nên
P(M | D) = 90% = 0,9.
Khi một người xét nghiệm có kết quả dương tính thì khả năng mắc bệnh của người đó là P(D | M). áp dụng ông thức Bayes, ta có:
P(M | D) = \(\frac{{P\left( M \right).P\left( {D|M} \right)}}{{P\left( M \right).P\left( {D|M} \right) + P\left( {\overline M } \right).P\left( {D|\overline M } \right)}}\) = \(\frac{{0,0001.0,9}}{{0,0001.0,9 + 0,9999.0,05}}\) = 0,1797%.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Họ nguyên hàm của hàm số y = \({e^x}\left( {2 + \frac{{{e^{ - x}}}}{{{{\cos }^2}x}}} \right)\) là
A. \(2{e^x} - \frac{1}{{\cos x}} + C\).
B. \(2{e^x} - \tan x + C\).
C. \(2{e^x} + \tan x + C\).
D. \(2{e^x} + \frac{1}{{\cos x}} + C\).
Câu 2:
Biết rằng nếu vị trí M có vĩ độ và kinh độ tương ứng là α°N, β°E (0 < α, β < 90) thì có tọa độ M(cosα°cosβ°; cosα°sinβ°; sinα°). Biết 1 đơn vị dài trong không gian Oxyz tương ứng với 6 371 km trong thực tế. Khoảng cách trên mặt đất từ vị trí P: 30°N45°E đến vị trí Q: 60°N45°E là (tính chính xác tới chữ số thập phân thứ tư sau dấu phẩy theo đơn vị kilômét)
A. 3335,8475 km.
B. 3335,8478 km.
C. 3355,8478 km.
D. 3355,8475 km.
Câu 3:
Diện tích S của hình phẳng giới hạn bởi các đường y = 2x2, y = −1, x = 0 và x = 1 được tính bởi công thức nào sau đây?
A. S = \(\pi \int\limits_0^1 {\left( {2{x^2} + 1} \right)dx} \).
B. S = \(\int\limits_0^1 {\left( {2{x^2} - 1} \right)dx.} \)
C. S = \(\int\limits_0^1 {{{\left( {2{x^2} + 1} \right)}^2}dx} \)
D. S = \(\int\limits_0^1 {\left( {2{x^2} + 1} \right)dx} \).
Câu 4:
Nguyên hàm của hàm số f(x) = x4 + x2 là
A. \(\frac{1}{5}{x^5} + \frac{1}{3}{x^3} + C\).
B. x4 + x2 + C.
C. x5 + x3 + C.
D. 3x3 + 2x + C
Câu 5:
Có hai chuồng thỏ. Chuồng I có 6 con thỏ đen và 10 con thỏ trắng. Chuồng II có 8 con thỏ đen và 4 con thỏ trắng. Trước tiên, từ chuồng I lấy ra ngẫu nhiên một con thỏ rồi cho vào chuồng II. Sau đó, từ chuồng II lấy ra ngẫu nhiên một con thỏ. Tính xác suất để con thỏ được lấy ra là con thỏ trắng.
A. \(\frac{5}{{13}}\).
B. \(\frac{{37}}{{104}}\).
C. \(\frac{4}{{13}}\).
D. \(\frac{{35}}{{104}}\).
Câu 6:
Trong một hộp kín có 10 chiếc bút bi xanh và 6 chiếc bút bi đỏ đều có kích thước và khối lượng như nhau. Bạn Sơn lấy ngẫu nhiên một chiếc bút bi từ trong hộp, không trả lại. Sau đó, bạn tùng lấy ngẫu nhiên một trong 15 chiếc bút còn lại. Tính xác suất bạn Sơn lấy được chiếc bút bi xanh và Tùng lấy được chiếc bút bi đỏ.
về câu hỏi!