Câu hỏi:
22/08/2024 9,426Giả sử có một loại bệnh mà tỉ lệ người mắc bệnh là 0,01%. Nếu một người mắc bệnh thì xác suất xét nghiệm cho kết quả dương tính là 90%, nếu một người không mắc bệnh thì xác suất cho kết quả dương tính là 5%. Khi một người xét nghiệm có kết quả dương tính thì khả năng mắc bệnh của người đó là bao nhiêu phần trăm?
A. 0,01%.
B. 4,995%.
C. 0,1797%.
D. 0,001%.
Quảng cáo
Trả lời:
Đáp án đúng là: C
Gọi M là biến cố: “Người đó mắc bệnh”;
D là biến cố: “Người đó có xét nghiệm dương tính”.
Ta có: P(M) = 0,01% = 0,0001 ⇒ P(\(\overline M \)) = 1 – 0,0001 = 0,9999.
Trong số những người không mắc bệnh nhưng có 5% số người có xét nghiệm dương tính nên P(D | \(\overline M \)) = 5% = 0,05.
Nếu một người mắc bệnh thì xác suất xét nghiệm cho kết quả dương tính là 90% nên
P(M | D) = 90% = 0,9.
Khi một người xét nghiệm có kết quả dương tính thì khả năng mắc bệnh của người đó là P(D | M). áp dụng ông thức Bayes, ta có:
P(M | D) = \(\frac{{P\left( M \right).P\left( {D|M} \right)}}{{P\left( M \right).P\left( {D|M} \right) + P\left( {\overline M } \right).P\left( {D|\overline M } \right)}}\) = \(\frac{{0,0001.0,9}}{{0,0001.0,9 + 0,9999.0,05}}\) = 0,1797%.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Gọi A là biến cố: “Vận động viên được chọn đội I”.
B là biến cố: “Vận động viên đạt huy chương vàng”.
Ta có: P(A) = \(\frac{6}{{14}} = \frac{3}{7}\); P(\(\overline A \)) = 1 – P(A) = \(\frac{4}{7}\);
P(B | A) = 0,65; P(B | \(\overline A \)) = 0,55.
Xác suất để vận động viên được chọn thuộc đội I khi vận động viên ấy đạt huy chương vàng được tính theo công thức Bayes là:
P(A | B) = \(\frac{{P\left( A \right).P\left( {A|B} \right)}}{{P\left( A \right).P\left( {A|B} \right) + P\left( {\overline A } \right).P\left( {A|\overline A } \right)}}\) = \(\frac{{\frac{3}{7}.0,65}}{{\frac{3}{7}.0,65 + \frac{4}{7}0,55}} = \frac{{39}}{{83}}\).
Lời giải
Đáp án đúng là: B
Gọi H là hình chiếu của C trên mặt phẳng (P).
Khoảng cách từ điểm C tới mặt phẳng (P) là d(C; (P)) = CH = \(\frac{{\left| {1.1 + 2.2 - 2.2 + 5} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }}\) = 2.
Vùng quan sát là hình tròn tâm H bán kính HA.
Ta có tam giác AHC cân tại C có CH vuông với đáy nên \(\widehat {ACH}\) = \(\frac{1}{2}\widehat C\) = 65°.
Do đó, AH = CH.tan65°.
Vậy diện tích vùng quan sát là: π.(CH.tan65°)2 ≈ 57,8.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận