Câu hỏi:
22/08/2024 224Có hai đội thi đấu môn bắn súng. Đội I có 6 vận động viên, dội II có 8 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên của đội I và đội II tương ứng là 0,65 và 0,55. Chọn ngẫu nhiên một vận động viên trong hai đội. Giả sử vận động viên được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội I.
A. \(\frac{{49}}{{140}}\).
B. \(\frac{{39}}{{83}}\).
C. \(\frac{{43}}{{83}}\).
D. \(\frac{{37}}{{140}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Gọi A là biến cố: “Vận động viên được chọn đội I”.
B là biến cố: “Vận động viên đạt huy chương vàng”.
Ta có: P(A) = \(\frac{6}{{14}} = \frac{3}{7}\); P(\(\overline A \)) = 1 – P(A) = \(\frac{4}{7}\);
P(B | A) = 0,65; P(B | \(\overline A \)) = 0,55.
Xác suất để vận động viên được chọn thuộc đội I khi vận động viên ấy đạt huy chương vàng được tính theo công thức Bayes là:
P(A | B) = \(\frac{{P\left( A \right).P\left( {A|B} \right)}}{{P\left( A \right).P\left( {A|B} \right) + P\left( {\overline A } \right).P\left( {A|\overline A } \right)}}\) = \(\frac{{\frac{3}{7}.0,65}}{{\frac{3}{7}.0,65 + \frac{4}{7}0,55}} = \frac{{39}}{{83}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Họ nguyên hàm của hàm số y = \({e^x}\left( {2 + \frac{{{e^{ - x}}}}{{{{\cos }^2}x}}} \right)\) là
A. \(2{e^x} - \frac{1}{{\cos x}} + C\).
B. \(2{e^x} - \tan x + C\).
C. \(2{e^x} + \tan x + C\).
D. \(2{e^x} + \frac{1}{{\cos x}} + C\).
Câu 2:
Giả sử có một loại bệnh mà tỉ lệ người mắc bệnh là 0,01%. Nếu một người mắc bệnh thì xác suất xét nghiệm cho kết quả dương tính là 90%, nếu một người không mắc bệnh thì xác suất cho kết quả dương tính là 5%. Khi một người xét nghiệm có kết quả dương tính thì khả năng mắc bệnh của người đó là bao nhiêu phần trăm?
A. 0,01%.
B. 4,995%.
C. 0,1797%.
D. 0,001%.
Câu 3:
Biết rằng nếu vị trí M có vĩ độ và kinh độ tương ứng là α°N, β°E (0 < α, β < 90) thì có tọa độ M(cosα°cosβ°; cosα°sinβ°; sinα°). Biết 1 đơn vị dài trong không gian Oxyz tương ứng với 6 371 km trong thực tế. Khoảng cách trên mặt đất từ vị trí P: 30°N45°E đến vị trí Q: 60°N45°E là (tính chính xác tới chữ số thập phân thứ tư sau dấu phẩy theo đơn vị kilômét)
A. 3335,8475 km.
B. 3335,8478 km.
C. 3355,8478 km.
D. 3355,8475 km.
Câu 4:
Diện tích S của hình phẳng giới hạn bởi các đường y = 2x2, y = −1, x = 0 và x = 1 được tính bởi công thức nào sau đây?
A. S = \(\pi \int\limits_0^1 {\left( {2{x^2} + 1} \right)dx} \).
B. S = \(\int\limits_0^1 {\left( {2{x^2} - 1} \right)dx.} \)
C. S = \(\int\limits_0^1 {{{\left( {2{x^2} + 1} \right)}^2}dx} \)
D. S = \(\int\limits_0^1 {\left( {2{x^2} + 1} \right)dx} \).
Câu 5:
Nguyên hàm của hàm số f(x) = x4 + x2 là
A. \(\frac{1}{5}{x^5} + \frac{1}{3}{x^3} + C\).
B. x4 + x2 + C.
C. x5 + x3 + C.
D. 3x3 + 2x + C
Câu 6:
Có hai chuồng thỏ. Chuồng I có 6 con thỏ đen và 10 con thỏ trắng. Chuồng II có 8 con thỏ đen và 4 con thỏ trắng. Trước tiên, từ chuồng I lấy ra ngẫu nhiên một con thỏ rồi cho vào chuồng II. Sau đó, từ chuồng II lấy ra ngẫu nhiên một con thỏ. Tính xác suất để con thỏ được lấy ra là con thỏ trắng.
A. \(\frac{5}{{13}}\).
B. \(\frac{{37}}{{104}}\).
C. \(\frac{4}{{13}}\).
D. \(\frac{{35}}{{104}}\).
Câu 7:
Trong một hộp kín có 10 chiếc bút bi xanh và 6 chiếc bút bi đỏ đều có kích thước và khối lượng như nhau. Bạn Sơn lấy ngẫu nhiên một chiếc bút bi từ trong hộp, không trả lại. Sau đó, bạn tùng lấy ngẫu nhiên một trong 15 chiếc bút còn lại. Tính xác suất bạn Sơn lấy được chiếc bút bi xanh và Tùng lấy được chiếc bút bi đỏ.
về câu hỏi!