Câu hỏi:

25/08/2024 470 Lưu

Cho hình đa giác đều có 9 cạnh ABCDEFGHI với tâm O (Hình 19). Tìm phát biểu sai, phát biểu đúng trong các phát biểu sau:

a) Các phép quay thuận chiều α° tâm O, với α° lần lượt nhận các giá trị 40°; 80°; …; 320°; 360° giữ nguyên hình đa giác đều ABCDEFGHI .

b) Phép quay ngược chiều 80° tâm O biến các điểm A, B, C, D, E lần lượt thành các điểm H, I, E, B, C.

c) Phép quay ngược chiều 120° tâm O biến các điểm A, B, C, D, E lần lượt thành các điểm G, H, I, A, C.

Cho hình đa giác đều có 9 cạnh ABCDEFGHI với tâm O (Hình 19). Tìm phát biểu sai, phát biểu đúng trong các phát biểu sau:  a) Các phép quay thuận chiều α° tâm O, với α° lần lượt nhận các giá trị 40°; 80°; …; 320°; 360° giữ nguyên hình đa giác đều ABCDEFGHI . (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

– Phát biểu a) đúng.

– Vì phép quay ngược chiều 80° tâm O biến điểm C thành điểm A nên phát biểu phép quay ngược chiều 80° tâm O biến điểm C thành điểm E là sai. Vậy phát biểu b) sai.

– Vì phép quay ngược chiều 120° tâm O biến điểm E thành điểm B nên phát biểu phép quay ngược chiều 120° tâm O biến điểm E thành điểm C là sai. Vậy phát biểu c) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét ∆ABC có Q, P lần lượt là trung điểm của AB, BC nên QP là đường trung bình của tam giác, do đó QP // AC và \(QP = \frac{1}{2}AC.\)

Tương tự, ta có: MN là đường trung bình của tam giác ACD, do đó MN // AC và \(MN = \frac{1}{2}AC.\)

Do đó MNPQ là hình bình hành.

Mặt khác, ta cũng chứng minh được MQ là đường trung bình của ∆ABD nên \(MQ = \frac{1}{2}BD.\)

Lại có ABCD là hình vuông nên AC = BD và AC BD.

Suy ra MN = MQ và MN MQ.

Khi đó hình bình hành MNPQ là hình vuông.

b) Phép quay ngược chiều 90° tâm O biến điểm O tương ứng thành chính nó.

Do ABCD là hình vuông tâm O nên OA = OB = OC = OD.

Theo câu a, ta có \(\widehat {AOD} = 90^\circ \)

Do đó, tia OD quay ngược chiều 90° tâm O đến tia OA.

Tương tự, đối với hình vuông MNPQ ta cũng có ON = OM và \(\widehat {NOM} = 90^\circ \) nên tia ON quay ngược chiều 90° tâm O đến tia OM.

Vậy phép quay ngược chiều 90° tâm O biến các điểm O, D, N tương ứng thành các điểm O, A, M.

c) Các phép quay tâm O giữ nguyên hình vuông MNPQ là các phép quay thuận chiều α° tâm O và các phép quay ngược chiều α° tâm O, với α° lần lượt nhận các giá trị:

α1° = 90°; α2° = 180°; α3° = 270°; α4° = 360°.

Lời giải

Trên mặt phẳng tọa độ Oxy, cho hình vuông ABCD với A(1; 1), B(–1; 1), C(–1; –1), D(1; –1). Phép quay ngược chiều 45° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A’, B’, C’, D’. Tính diện tích tứ giác A’B’C’D’. (ảnh 1)

Gọi H là hình chiếu của A trên Oy.

Ta có A(1; 1) nên suy ra AH = OH = 1.

Do đó ∆OAH vuông cân tại H nên \(\widehat {AOH} = 45^\circ .\)

Xét ∆OAH vuông tại H, ta có: OA2 = OH2 + AH2 (định lí Pythagore)

Suy ra \(OA = \sqrt {O{H^2} + A{H^2}} = \sqrt {{1^2} + {1^2}} = \sqrt 2 .\)

Tương tự, ta sẽ có \(OA = OB = OC = OD = \sqrt 2 .\)

Mặt khác, do ABCD là hình vuông nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường, do đó O là tâm của hình vuông.

Do đó, phép quay ngược chiều 45° tâm O biến điểm A thành các điểm A’ nằm trên tia Oy sao cho \(OA' = OA = \sqrt 2 ,\) tức là \[A'\left( {0;\sqrt 2 } \right).\]

Tương tự, ta chứng minh được, phép quay ngược chiều 45° tâm O biến các điểm A, B, C, D lần lượt thành các điểm \[A'\left( {0;\sqrt 2 } \right),\,\,B'\left( { - \sqrt 2 ;0} \right),\] \(C'\left( {0; - \sqrt 2 } \right),\,\,D'\left( {\sqrt 2 ;0} \right).\)

Suy ra tứ giác A’B’C’D’ là hình vuông với hai đường chéo là A’C’ và B’D’, nên diện tích tứ giác A’B’C’D’ là:

\(\frac{1}{2} \cdot A'C' \cdot B'D' = \frac{1}{2} \cdot 2\sqrt 2 \cdot 2\sqrt 2 = 4\) (đơn vị diện tích).