Câu hỏi:

25/08/2024 246

Cho tam giác ABC. Về phía ngoài tam giác đó dựng các hình vuông ABMN và ACFG (Hình 22). Sử dụng kết quả bài tập 21 chứng minh BG = CN.

Cho tam giác ABC. Về phía ngoài tam giác đó dựng các hình vuông ABMN và ACFG (Hình 22). Sử dụng kết quả bài tập 21 chứng minh BG = CN. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì ABMN là hình vuông nên AB = AN và

Do đó phép quay thuận chiều 90° tâm A biến điểm B thành các điểm N.

Tương tự, phép quay thuận chiều 90° tâm A biến điểm G thành các điểm C.

Vì phép quay thuận chiều 90° tâm A biến các điểm B, G lần lượt thành các điểm N, C nên áp dụng kết quả bài tập 21 ta có BG = CN.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Do con thuyền đang đi về hướng Bắc, nên để con tàu rẽ sang hướng Tây thì bánh lái cần quay sang trái (quay ngược chiều kim đồng hồ) một góc 90°.

Vậy bác An cần thực hiện phép quay ngược chiều 90° tâm là tâm của bánh lái.

b) Do con thuyền đang đi về hướng Bắc, nên để con tàu rẽ sang hướng Đông thì bánh lái cần quay sang phải (quay thuận chiều kim đồng hồ) một góc 90°.

Vậy bác An cần thực hiện phép quay thuận chiều 90° tâm là tâm của bánh lái.

Lời giải

Trên mặt phẳng tọa độ Oxy, cho hình vuông ABCD với A(1; 1), B(–1; 1), C(–1; –1), D(1; –1). Phép quay ngược chiều 45° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A’, B’, C’, D’. Tính diện tích tứ giác A’B’C’D’. (ảnh 1)

Gọi H là hình chiếu của A trên Oy.

Ta có A(1; 1) nên suy ra AH = OH = 1.

Do đó ∆OAH vuông cân tại H nên \(\widehat {AOH} = 45^\circ .\)

Xét ∆OAH vuông tại H, ta có: OA2 = OH2 + AH2 (định lí Pythagore)

Suy ra \(OA = \sqrt {O{H^2} + A{H^2}} = \sqrt {{1^2} + {1^2}} = \sqrt 2 .\)

Tương tự, ta sẽ có \(OA = OB = OC = OD = \sqrt 2 .\)

Mặt khác, do ABCD là hình vuông nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường, do đó O là tâm của hình vuông.

Do đó, phép quay ngược chiều 45° tâm O biến điểm A thành các điểm A’ nằm trên tia Oy sao cho \(OA' = OA = \sqrt 2 ,\) tức là \[A'\left( {0;\sqrt 2 } \right).\]

Tương tự, ta chứng minh được, phép quay ngược chiều 45° tâm O biến các điểm A, B, C, D lần lượt thành các điểm \[A'\left( {0;\sqrt 2 } \right),\,\,B'\left( { - \sqrt 2 ;0} \right),\] \(C'\left( {0; - \sqrt 2 } \right),\,\,D'\left( {\sqrt 2 ;0} \right).\)

Suy ra tứ giác A’B’C’D’ là hình vuông với hai đường chéo là A’C’ và B’D’, nên diện tích tứ giác A’B’C’D’ là:

\(\frac{1}{2} \cdot A'C' \cdot B'D' = \frac{1}{2} \cdot 2\sqrt 2 \cdot 2\sqrt 2 = 4\) (đơn vị diện tích).