Một hình nón có thể tích bằng 25π cm3, nếu giữ nguyên chiều cao và tăng bán kính đường tròn đáy của hình nón đó lên 2 lần thì thể tích của hình nón mới bằng:
A. 50π cm3.
B. 100π cm3.
C. 150π cm3.
D. 200π cm3.
Một hình nón có thể tích bằng 25π cm3, nếu giữ nguyên chiều cao và tăng bán kính đường tròn đáy của hình nón đó lên 2 lần thì thể tích của hình nón mới bằng:
A. 50π cm3.
B. 100π cm3.
C. 150π cm3.
D. 200π cm3.
Câu hỏi trong đề: Giải SBT Toán 9 Bài tập cuối chương X đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Gọi r (cm) và h (cm) lần lượt là bán kính đáy và chiều cao ban đầu của hình nón (r > 0, h > 0).
Thể tích của hình nón cũ là: \[\frac{1}{3}\pi {r^2}h\] (cm3).
Thể tích của hình nón mới là: \[\frac{1}{3}\pi \cdot {\left( {2r} \right)^2} \cdot h = \frac{4}{3}\pi {r^2}h\] (cm3).
Tỉ số thể tích của hình nón mới và hình nón cũ là: \[\frac{{\frac{4}{3}\pi {r^2}h}}{{\frac{1}{3}\pi {r^2}h}} = 4.\]
Do đó thể tích của hình nón mới gấp 4 lần thể tích của hình nón cũ.
Vậy thể tích hình nón mới là: 4.25 = 100 (cm3).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có tổng thể tích của 4 viên bi thuỷ tinh hình cầu có cùng bán kính 3 cm là:
\(4 \cdot \left( {\frac{4}{3}\pi \cdot {3^3}} \right) = 144\pi \) (cm3).
Khi thả vào cốc nước 4 viên bi thuỷ tinh đó thì lượng nước trong cốc cao thêm độ cao h là: \(h = \frac{{144\pi }}{{\pi \cdot {4^2}}} = 9\) (cm).
Vậy sau khi thả vào cốc nước 4 viên bi thuỷ tinh đó, mực nước trong cốc cách miệng cốc một khoảng là: 20 – 9 – 9 = 2 (cm).
Lời giải
Gọi R (cm) và r (cm) lần lượt là bán kính đáy của hình trụ An và Bình đã cuộn (R > 0, r > 0).
Hình trụ An cuộn có chu vi đáy bằng 3a nên ta có 2πR = 3a, suy ra \(R = \frac{{3a}}{{2\pi }}\) (cm).
Hình trụ An cuộn có chu vi đáy bằng a nên ta có 2πr = a, suy ra \(r = \frac{a}{{2\pi }}\) (cm).
Thể tích của hình trụ bạn An cuộn là
\({V_1} = \pi {\left( {\frac{{3a}}{{2\pi }}} \right)^2} \cdot a = \frac{{9{a^3}}}{{4\pi }}\) (cm3).
Thể tích của hình trụ bạn Bình cuộn là
\({V_2} = \pi {\left( {\frac{a}{{2\pi }}} \right)^2} \cdot 3a = \frac{{3{a^3}}}{{4\pi }}\) (cm3).
Do đó, tỉ số của V1 và V2 là \[\frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{{9{a^3}}}{{4\pi }}}}{{\frac{{3{a^3}}}{{4\pi }}}} = 3.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
