Câu hỏi:
25/08/2024 640
Một hình nón có thể tích bằng 25π cm3, nếu giữ nguyên chiều cao và tăng bán kính đường tròn đáy của hình nón đó lên 2 lần thì thể tích của hình nón mới bằng:
A. 50π cm3.
B. 100π cm3.
C. 150π cm3.
D. 200π cm3.
Một hình nón có thể tích bằng 25π cm3, nếu giữ nguyên chiều cao và tăng bán kính đường tròn đáy của hình nón đó lên 2 lần thì thể tích của hình nón mới bằng:
A. 50π cm3.
B. 100π cm3.
C. 150π cm3.
D. 200π cm3.
Câu hỏi trong đề: Giải SBT Toán 9 Bài tập cuối chương X đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Gọi r (cm) và h (cm) lần lượt là bán kính đáy và chiều cao ban đầu của hình nón (r > 0, h > 0).
Thể tích của hình nón cũ là: \[\frac{1}{3}\pi {r^2}h\] (cm3).
Thể tích của hình nón mới là: \[\frac{1}{3}\pi \cdot {\left( {2r} \right)^2} \cdot h = \frac{4}{3}\pi {r^2}h\] (cm3).
Tỉ số thể tích của hình nón mới và hình nón cũ là: \[\frac{{\frac{4}{3}\pi {r^2}h}}{{\frac{1}{3}\pi {r^2}h}} = 4.\]
Do đó thể tích của hình nón mới gấp 4 lần thể tích của hình nón cũ.
Vậy thể tích hình nón mới là: 4.25 = 100 (cm3).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có tổng thể tích của 4 viên bi thuỷ tinh hình cầu có cùng bán kính 3 cm là:
\(4 \cdot \left( {\frac{4}{3}\pi \cdot {3^3}} \right) = 144\pi \) (cm3).
Khi thả vào cốc nước 4 viên bi thuỷ tinh đó thì lượng nước trong cốc cao thêm độ cao h là: \(h = \frac{{144\pi }}{{\pi \cdot {4^2}}} = 9\) (cm).
Vậy sau khi thả vào cốc nước 4 viên bi thuỷ tinh đó, mực nước trong cốc cách miệng cốc một khoảng là: 20 – 9 – 9 = 2 (cm).
Lời giải
Thể tích của khối gỗ hình trụ (T) là: πR2h.
Thể tích của khối gỗ hình nón (N) là: \(\frac{1}{3}\pi \cdot {\left( {\frac{2}{3}R} \right)^2} \cdot h = \frac{4}{{27}}\pi {R^2}h.\)
Thể tích phần còn lại của khối gỗ (T) sau khi khoét bỏ khối gỗ hình nón (N) là
\(\pi {R^2}h - \frac{4}{{27}}\pi {R^2}h = \frac{{23}}{{27}}\pi {R^2}h.\)
Tỉ số phần trăm của khối gỗ (T) sau khi khoét bỏ khối hình nón (N) so với thể tích của khối gỗ (T) ban đầu là \(\frac{{\frac{{23}}{{27}}\pi {R^2}h}}{{\pi {R^2}h}} \cdot 100\% \approx 85,2\% .\)
Vậy thể tích phần còn lại của khối gỗ (T) sau khi khoét bỏ khối hình nón (N) bằng khoảng 85,2% thể tích của khối gỗ (T) ban đầu.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.