Câu hỏi:

25/08/2024 1,101 Lưu

Bác Long đã chi tiền để làm một cái bể hình trụ có bán kính đường tròn đáy là 0,8 m và có thể tích là 1,12π m3. Đáy bể làm bằng bê tông giá 100 000 đồng/m2. Phần thân làm bằng tôn inox giá 15 000 đồng/m2. Phần nắp làm bằng nhôm giá 12 000 đồng/m2. Hỏi số tiền bác Long đã chi để làm được cái bể đó là bao nhiêu đồng (làm tròn kết quả đến hàng nghìn)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Diện tích đáy bể là: π.0,82 = 0,64π (m2).

Do hình trụ có diện tích đáy bằng 0,64π m2 và có thể tích là 1,1\[h = \frac{{1,12\pi }}{{0,64\pi }} = 1,75\] m3 nên ta có chiều cao của hình trụ đó là:  (m).

Diện tích xung quanh của bể hình trụ đó là: 2π.0,8.1,75 = 2,8π (m2).

Số tiền làm đáy bể là: 0,64π . 100 000 = 64 000π (đồng).

Số tiền làm thân bể là: 2,8π . 150 000 = 420 000π (đồng).

Số tiền làm nắp bể là: 0,64π . 120 000 = 76 800π (đồng).

Số tiền bác An đã chi để làm được cái bể đó là:

64 000π + 420 000π + 76 800π = 560,8π ≈ 560,8 . 3,14 ≈ 1 761 000 (đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có tổng thể tích của 4 viên bi thuỷ tinh hình cầu có cùng bán kính 3 cm là:

\(4 \cdot \left( {\frac{4}{3}\pi \cdot {3^3}} \right) = 144\pi \) (cm3).

Khi thả vào cốc nước 4 viên bi thuỷ tinh đó thì lượng nước trong cốc cao thêm độ cao h là: \(h = \frac{{144\pi }}{{\pi \cdot {4^2}}} = 9\) (cm).

Vậy sau khi thả vào cốc nước 4 viên bi thuỷ tinh đó, mực nước trong cốc cách miệng cốc một khoảng là: 20 – 9 – 9 = 2 (cm).

Lời giải

Gọi R (cm) và r (cm) lần lượt là bán kính đáy của hình trụ An và Bình đã cuộn (R > 0, r > 0).

Hình trụ An cuộn có chu vi đáy bằng 3a nên ta có 2πR = 3a, suy ra \(R = \frac{{3a}}{{2\pi }}\) (cm).

Hình trụ An cuộn có chu vi đáy bằng a nên ta có 2πr = a, suy ra \(r = \frac{a}{{2\pi }}\) (cm).

Thể tích của hình trụ bạn An cuộn là

\({V_1} = \pi {\left( {\frac{{3a}}{{2\pi }}} \right)^2} \cdot a = \frac{{9{a^3}}}{{4\pi }}\) (cm3).

Thể tích của hình trụ bạn Bình cuộn là

\({V_2} = \pi {\left( {\frac{a}{{2\pi }}} \right)^2} \cdot 3a = \frac{{3{a^3}}}{{4\pi }}\) (cm3).

Do đó, tỉ số của V1 và V2\[\frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{{9{a^3}}}{{4\pi }}}}{{\frac{{3{a^3}}}{{4\pi }}}} = 3.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP