Câu hỏi:

25/08/2024 2,428

Một cốc nước có dạng hình trụ chiều cao 20 cm, bán kính đáy là 4 cm, lượng nước ban đầu trong cốc cao 9 cm. Người ta thả chìm vào cốc nước đó 4 viên bi thuỷ tinh hình cầu có cùng bán kính là 3 cm. Hỏi sau khi thả vào cốc nước 4 viên bi thuỷ tinh trên, mực nước trong cốc cách miệng cốc bao nhiêu centimét?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có tổng thể tích của 4 viên bi thuỷ tinh hình cầu có cùng bán kính 3 cm là:

\(4 \cdot \left( {\frac{4}{3}\pi \cdot {3^3}} \right) = 144\pi \) (cm3).

Khi thả vào cốc nước 4 viên bi thuỷ tinh đó thì lượng nước trong cốc cao thêm độ cao h là: \(h = \frac{{144\pi }}{{\pi \cdot {4^2}}} = 9\) (cm).

Vậy sau khi thả vào cốc nước 4 viên bi thuỷ tinh đó, mực nước trong cốc cách miệng cốc một khoảng là: 20 – 9 – 9 = 2 (cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Thể tích của khối gỗ hình trụ (T) là: πR2h.

Thể tích của khối gỗ hình nón (N) là: \(\frac{1}{3}\pi \cdot {\left( {\frac{2}{3}R} \right)^2} \cdot h = \frac{4}{{27}}\pi {R^2}h.\)

Thể tích phần còn lại của khối gỗ (T) sau khi khoét bỏ khối gỗ hình nón (N) là

\(\pi {R^2}h - \frac{4}{{27}}\pi {R^2}h = \frac{{23}}{{27}}\pi {R^2}h.\)

Tỉ số phần trăm của khối gỗ (T) sau khi khoét bỏ khối hình nón (N) so với thể tích của khối gỗ (T) ban đầu\(\frac{{\frac{{23}}{{27}}\pi {R^2}h}}{{\pi {R^2}h}} \cdot 100\% \approx 85,2\% .\)

Vậy thể tích phần còn lại của khối gỗ (T) sau khi khoét bỏ khối hình nón (N) bằng khoảng 85,2% thể tích của khối gỗ (T) ban đầu.

Lời giải

Gọi R (cm) và r (cm) lần lượt là bán kính đáy của hình trụ An và Bình đã cuộn (R > 0, r > 0).

Hình trụ An cuộn có chu vi đáy bằng 3a nên ta có 2πR = 3a, suy ra \(R = \frac{{3a}}{{2\pi }}\) (cm).

Hình trụ An cuộn có chu vi đáy bằng a nên ta có 2πr = a, suy ra \(r = \frac{a}{{2\pi }}\) (cm).

Thể tích của hình trụ bạn An cuộn là

\({V_1} = \pi {\left( {\frac{{3a}}{{2\pi }}} \right)^2} \cdot a = \frac{{9{a^3}}}{{4\pi }}\) (cm3).

Thể tích của hình trụ bạn Bình cuộn là

\({V_2} = \pi {\left( {\frac{a}{{2\pi }}} \right)^2} \cdot 3a = \frac{{3{a^3}}}{{4\pi }}\) (cm3).

Do đó, tỉ số của V1 và V2\[\frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{{9{a^3}}}{{4\pi }}}}{{\frac{{3{a^3}}}{{4\pi }}}} = 3.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP