Câu hỏi:

28/08/2024 3,223

Trong một nhóm 10 học sinh lớp 9 có 5 bạn học trường Quang Trung; 3 bạn học trường Nguyễn Huệ và 2 bạn học trường Tây Sơn.

Chọn ngẫu nhiên 1 học sinh trong 10 học sinh đó.

a) Không gian mẫu của phép thử có bao nhiêu phần tử?

b) Tính xác suất của mỗi biến cố sau:

A: “Bạn học sinh được chọn học trường Quang Trung”;

B: “Bạn học sinh được chọn không học trường Tây Sơn”.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Trong nhóm học sinh lớp 9 có 10 học sinh nên số phần tử của không gian mẫu là n(Ω) = 10.

b) ⦁ Do có 5 bạn học trường Quang Trung nên số kết quả thuận lợi cho biến cố A là n(A) = 5.

Xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{5}{{10}} = 0,5.\)

⦁ Số học sinh không học trường Tây Sơn là: 5 + 3 = 8 (học sinh).

Số kết quả thuận lợi cho biến cố B là n(B) = 8.

Xác suất của biến cố B là \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{8}{{10}} = 0,8.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Kí hiệu (i; j) là kết quả con xúc xắc thứ nhất xuất hiện i chấm, con xúc xắc thứ hai xuất hiện j chấm.

Các kết quả thuận lợi cho biến cố A là (1; 2); (1; 3); (1; 5); (2; 1); (3; 1); (5; 1).

b) Số kết quả thuận lợi cho biến cố A là n(A) = 6.

Số kết quả có thể xảy ra là n(Ω) = 36.

Xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{6}{{36}} = \frac{1}{6}.\)

Lời giải

a) Số kết quả có thể xảy ra khi bạn An chọn 1 viên bi từ hộp thứ nhất là 9.

Số kết quả thuận lợi cho biến cố A: “Bạn An chọn được viên bi màu xanh” là n(A) = 3.

Xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{3}{9} = \frac{1}{3}.\)

b) Gọi x là số viên bi đỏ trong hộp thứ hai.

Số kết quả có thể xảy ra khi Thắng chọn 1 viên bi từ hộp thứ hai là x + 5.

Số kết quả thuận lợi cho biến cố B: “Bạn Thắng chọn được viên bi màu xanh” là n(B) = 5.

Xác suất của biến cố B là \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{x}{{x + 5}}.\)

Do P(A) = P(B) nên \(\frac{5}{{x + 5}} = \frac{1}{3}.\)

Giải phương trình:

\(\frac{5}{{x + 5}} = \frac{1}{3}\)

x + 5 = 5.3

x + 5 = 15

x = 10.

Vậy trong hộp thứ hai có 10 viên bi đỏ.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay