Câu hỏi:

28/08/2024 2,916

Cho tam giác ABC có AB = AC = 12 cm và \(\widehat {BAC} = 120^\circ .\) Xác định tâm và tính bán kính của đường tròn (O; R) ngoại tiếp tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có AB = AC = 12 cm và góc BAC = 120o Xác định tâm và tính bán kính của đường tròn (O; R) ngoại tiếp tam giác ABC.  (ảnh 1)

Vẽ đường trung trực của đoạn thẳng AB và AC cắt nhau tại điểm O.

Khi đó OA = OB và OA = OC.

Do đó R = OA = OB = OC, suy ra đường tròn (O; R) ngoại tiếp tam giác ABC.

Ta có AB = AC và OB = OC nên OA là đường trung trực của đoạn thẳng BC.

Vì tam giác ABC cân tại A nên đường trung trực OA của tam giác cũng là tia phân giác của góc BAC, suy ra \(\widehat {OAB} = \frac{1}{2}\widehat {BAC} = \frac{1}{2} \cdot 120^\circ  = 60^\circ .\)

Xét ∆OAB cân tại O (OA = OB) có \(\widehat {OAB} = 60^\circ \) nên tam giác OAB là tam giác đều.

Vậy R = OA = AB = 12 (cm).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có đường cao AH (H ∈ BC) và nội tiếp đường tròn (O). Vẽ đường kính AD của đường tròn (O). Chứng minh AB.AC = AH.AD.

Xem đáp án » 28/08/2024 2,061

Câu 2:

Cho hình chữ nhật ABCD có AB = 5 cm, AD = 12 cm. Tìm tâm và bán kính của đường tròn ngoại tiếp các tam giác ABC và ADC.

Xem đáp án » 28/08/2024 1,850

Câu 3:

Cho tam giác đều MNP có cạnh bằng \(2a\sqrt 3 .\) Tính theo a bán kính các đường tròn ngoại tiếp và nội tiếp tam giác MNP.

Xem đáp án » 28/08/2024 1,454

Câu 4:

Để giữ vệ sinh trong một khu hội chợ, cứ mỗi cụm 3 quầy hàng A, B, C người ta lại đặt một thùng rác tại điểm O cách đều A, B, C. Cho biết có một nhà vệ sinh W nằm chính giữa hai quầy hàng A, B và khoảng cách từ W đến A và O lần lượt là 4 m và 3 m (Hình 11). Tính khoảng cách từ mỗi quầy hàng đến điểm đặt thùng rác.

Để giữ vệ sinh trong một khu hội chợ, cứ mỗi cụm 3 quầy hàng A, B, C người ta lại đặt một thùng rác tại điểm O cách đều A, B, C. Cho biết có một nhà (ảnh 1)

Xem đáp án » 28/08/2024 847
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua