Câu hỏi:
28/08/2024 160Cho hình chữ nhật ABCD có AB = 5 cm, AD = 12 cm. Tìm tâm và bán kính của đường tròn ngoại tiếp các tam giác ABC và ADC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Vì ABCD là hình chữ nhật nên hai tam giác vuông ABC và ADC có chung cạnh huyền AC, do đó chúng cùng có đường tròn ngoại tiếp là (O; R) với tâm O là trung điểm của AC và bán kính bằng \[R = \frac{{AC}}{2}\,.\]
Áp dụng định lí Pythagore cho ∆ABC vuông tại B, ta có:
AC2 = AB2 + BC2 = 52 + 122 = 169.
Suy ra \[AC = \sqrt {169} = 13\] (cm).
Do đó \[R = \frac{{AC}}{2}\,\, = \frac{{13}}{2} = 6,5\;\] (cm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có AB = AC = 12 cm và \(\widehat {BAC} = 120^\circ .\) Xác định tâm và tính bán kính của đường tròn (O; R) ngoại tiếp tam giác ABC.
Câu 2:
Cho tam giác đều MNP có cạnh bằng \(2a\sqrt 3 .\) Tính theo a bán kính các đường tròn ngoại tiếp và nội tiếp tam giác MNP.
Câu 3:
Cho tam giác ABC có đường cao AH (H ∈ BC) và nội tiếp đường tròn (O). Vẽ đường kính AD của đường tròn (O). Chứng minh AB.AC = AH.AD.
Câu 4:
Để giữ vệ sinh trong một khu hội chợ, cứ mỗi cụm 3 quầy hàng A, B, C người ta lại đặt một thùng rác tại điểm O cách đều A, B, C. Cho biết có một nhà vệ sinh W nằm chính giữa hai quầy hàng A, B và khoảng cách từ W đến A và O lần lượt là 4 m và 3 m (Hình 11). Tính khoảng cách từ mỗi quầy hàng đến điểm đặt thùng rác.
về câu hỏi!