Câu hỏi:

28/08/2024 909

Để giữ vệ sinh trong một khu hội chợ, cứ mỗi cụm 3 quầy hàng A, B, C người ta lại đặt một thùng rác tại điểm O cách đều A, B, C. Cho biết có một nhà vệ sinh W nằm chính giữa hai quầy hàng A, B và khoảng cách từ W đến A và O lần lượt là 4 m và 3 m (Hình 11). Tính khoảng cách từ mỗi quầy hàng đến điểm đặt thùng rác.

Để giữ vệ sinh trong một khu hội chợ, cứ mỗi cụm 3 quầy hàng A, B, C người ta lại đặt một thùng rác tại điểm O cách đều A, B, C. Cho biết có một nhà (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Để giữ vệ sinh trong một khu hội chợ, cứ mỗi cụm 3 quầy hàng A, B, C người ta lại đặt một thùng rác tại điểm O cách đều A, B, C. Cho biết có một nhà (ảnh 2)

Điểm O cách đều 3 điểm A, B, C nên O là tâm của đường tròn ngoại tiếp tam giác ABC.

Suy ra O là giao điểm của 3 đường trung trực của tam giác ABC.

Trong tam giác OWA vuông tại W, theo định lí Pythagore, ta có:

OA2 = OW2 + WA2 = 32 + 42 = 25.

Suy ra \[OA = \sqrt {25}  = 5\;({\rm{m}}).\]

Vậy khoảng cách từ mỗi quầy hàng đến điểm đặt thùng rác là 5 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = AC = 12 cm và góc BAC = 120o Xác định tâm và tính bán kính của đường tròn (O; R) ngoại tiếp tam giác ABC.  (ảnh 1)

Vẽ đường trung trực của đoạn thẳng AB và AC cắt nhau tại điểm O.

Khi đó OA = OB và OA = OC.

Do đó R = OA = OB = OC, suy ra đường tròn (O; R) ngoại tiếp tam giác ABC.

Ta có AB = AC và OB = OC nên OA là đường trung trực của đoạn thẳng BC.

Vì tam giác ABC cân tại A nên đường trung trực OA của tam giác cũng là tia phân giác của góc BAC, suy ra \(\widehat {OAB} = \frac{1}{2}\widehat {BAC} = \frac{1}{2} \cdot 120^\circ  = 60^\circ .\)

Xét ∆OAB cân tại O (OA = OB) có \(\widehat {OAB} = 60^\circ \) nên tam giác OAB là tam giác đều.

Vậy R = OA = AB = 12 (cm).

Lời giải

Cho tam giác ABC có đường cao AH (H ∈ BC) và nội tiếp đường tròn (O). Vẽ đường kính AD của đường tròn (O). Chứng minh AB.AC = AH.AD. (ảnh 1)

Do AH là đường cao tam giác ABC nên AH ⊥ BC, suy ra \[\widehat {AHB} = \widehat {AHC} = 90^\circ \]

Ta có \(\widehat {ACD}\) là góc nội tiếp chắn nửa đường tròn (O) đường kính AD nên \(\widehat {ACD} = 90^\circ .\)

Xét ∆AHB và ∆ACD có:

\(\widehat {AHB} = \widehat {ACD} = 90^\circ ;\)

\(\widehat {ABH} = \widehat {ADC}\) (hai góc nội tiếp cùng chắn cung AC của đường tròn (O)).

Do đó ∆AHB ᔕ ∆ACD (g.g).

Suy ra \(\frac{{AB}}{{AD}} = \frac{{AH}}{{AC}}\) hay AB.AC = AH.AD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP