Câu hỏi:
19/09/2024 356
Trong buổi tham quan vườn quốc gia Cát Tiên, nhóm học sinh lớp 12A3 đã ước lượng chiều dài thân của một số cá thể chuồn chuồn và ghi lại trong bảng số liệu sau:
d) Độ lệch chuẩn của mẫu số liệu ghép trên gần nhất với giá trị nào sau đây?
A. 1,29.
B. 5,13.
C. 2,27.
D. 1,14.
Trong buổi tham quan vườn quốc gia Cát Tiên, nhóm học sinh lớp 12A3 đã ước lượng chiều dài thân của một số cá thể chuồn chuồn và ghi lại trong bảng số liệu sau:

d) Độ lệch chuẩn của mẫu số liệu ghép trên gần nhất với giá trị nào sau đây?
A. 1,29.
B. 5,13.
C. 2,27.
D. 1,14.
Quảng cáo
Trả lời:
Đáp án đúng là: D
Chọn các giá trị đại diện của mẫu số liệu, ta tính được số trung bình của mẫu số liệu là:
\(\overline x = \frac{{3.8 + 4.25 + 5.28 + 6.31 + 7.12}}{{104}}\) = \(\frac{{267}}{{52}}\).
Phương sai của mẫu số liệu là:
s2 = \(\frac{{{3^2}.8 + {4^2}.25 + {5^2}.28 + {6^2}.31 + {7^2}.12}}{{104}} - {\left( {\frac{{267}}{{52}}} \right)^2}\) ≈ 1,29.
Độ lệch chuẩn của mẫu số liệu là:
s ≈ \(\sqrt {1,29} \) ≈ 1,14.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Số trung bình của mẫu số liệu là:
\(\overline x \) = \(\frac{{9.5 + 11.12 + 13.19 + 15.21 + 17.7}}{{64}}\) = 13,40625.
Phương sai của mẫu số liệu trên là:
s2 = \(\frac{{{9^2}.5 + {{11}^2}.12 + {{13}^2}.19 + {{15}^2}.21 + {{17}^2}.7}}{{64}} - 13,{40625^2}\) ≈ 4,897.
Độ lệch chuẩn của mẫu số liệu là:
s ≈ \(\sqrt {4,897} \) ≈ 2,21.
Lời giải
a) 2 |
b) 10 |
c) 113 |
d) 71 |
Dựa vào biểu đồ trên, ta có bảng sau:

Tần số của nhóm [6; 8) là 25.8% = 2 (nhân viên).
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: R = 16 – 6 = 10.
Ta có: \(\frac{n}{4} = \frac{{25}}{4} = 6,25\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là x7 ∈ [8; 10).
Do đó, Q1 = 8 + \(\frac{{6,25 - 2}}{6}\left( {10 - 8} \right)\) = \(\frac{{113}}{{12}}\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.25}}{4} = 18,75\).
Tứ phân vị thứ ba của mẫu số liệu gốc là x19 ∈ [12; 14).
Do đó, Q3 = 12 + \(\frac{{18,75 - \left( {2 + 6 + 10} \right)}}{4}\left( {14 - 12} \right)\) = \(\frac{{99}}{8}\).
Khoảng tứ phân vị của mẫu số liệu là:
∆Q = Q3 – Q1 = \(\frac{{99}}{8}\) − \(\frac{{113}}{{12}}\) = \(\frac{{71}}{{24}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.