Câu hỏi:

19/09/2024 404 Lưu

Một nhóm nghiên cứu đã đo mức độ ồn của các phương tiện giao thông trên hai đường phố vào một ngày trong tuần, trong khoảng thời gian từ 5 giờ 30 phút đến 20 giờ 30 phút. Người ta đã thực hiện 92 lần đo ở mỗi con đường vào khoảng thời gian như nhau. Kết quả thống kê được ghi lại như trong bảng sau:

Một nhóm nghiên cứu đã đo mức độ ồn của các phương tiện giao thông trên hai đường phố vào một ngày trong tuần, trong khoảng thời gian từ 5 giờ 30 phút đến 20 giờ 30 phút. Người ta đã thực hiện 92 lần đo ở mỗi con đường vào khoảng thời gian như nhau. Kết quả thống kê được ghi lại như trong bảng sau: (ảnh 1)

Hãy so sánh độ phân tán mức độ ồn của cá phương tiệm giao thông ở hai đường phố trên:

a) theo khoảng biến thiên;

b) theo khoảng tứ phân vị;

c) theo phương sai.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Khoảng biến thiên của mẫu số liệu ghép nhóm về mức độ ồn trên đường I là:

RI = 79 – 59 = 20 (dB).

Khoảng biến thiên của mẫu số liệu ghép nhóm về mức độ ồn trên đường II là:

RII = 83 – 55 = 28 (dB).

So sánh theo khoảng biến thiên, mức độ ồn trên đường II phân tán hơn trên đường I.

b) Với mẫu số liệu ở đường I:

Cỡ mẫu n = 92

Có: \(\frac{n}{4} = \frac{{92}}{4} = 23\) nên nhóm chứa tứ phân vị thứ nhất là [67; 71).

Do đó, Q1 = 67 + \(\frac{{23 - \left( {4 + 11} \right)}}{{41}}\left( {71 - 67} \right)\) = \(\frac{{2779}}{{41}}\).

Có: \(\frac{{3n}}{4} = \frac{{3.92}}{4} = 69\) nên nhóm chứa tứ phân vị thứ ba là [71; 75).

Do đó, Q3 = 71 + \(\frac{{69 - \left( {4 + 11 + 41} \right)}}{{25}}\left( {75 - 71} \right)\) = \(\frac{{1827}}{{25}}\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm tại Quy Nhơn là:

∆QI = Q3 – Q1 = \(\frac{{1827}}{{25}}\) – \(\frac{{2779}}{{41}}\) ≈ 5,3.

Với mẫu số liệu ở đường II:

Có: \(\frac{n}{4} = \frac{{92}}{4} = 23\) nên nhóm chứa tứ phân vị thứ nhất là [67; 71).

Do đó, Q1 = 67 + \(\frac{{23 - 5}}{{19}}\left( {71 - 67} \right)\) = \(\frac{{1345}}{{19}}\).

Có: \(\frac{{3n}}{4} = \frac{{3.92}}{4} = 69\) nên nhóm chứa tứ phân vị thứ ba là [75; 79).

Do đó, Q3 = 75 + \(\frac{{69 - \left( {5 + 19 + 43} \right)}}{{18}}\left( {79 - 75} \right)\) = \(\frac{{679}}{9}\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm tại Quy Nhơn là:

∆QII = Q3 – Q1 = \(\frac{{679}}{9}\) – \(\frac{{1345}}{{19}}\) ≈ 4,65.

So sánh theo khoảng tứ phân vị, mức độ ồn trên đường I phân tán hơn trên đường II.

c) Phương sai

Ta có bảng giá trị đại diện như sau:

Một nhóm nghiên cứu đã đo mức độ ồn của các phương tiện giao thông trên hai đường phố vào một ngày trong tuần, trong khoảng thời gian từ 5 giờ 30 phút đến 20 giờ 30 phút. Người ta đã thực hiện 92 lần đo ở mỗi con đường vào khoảng thời gian như nhau. Kết quả thống kê được ghi lại như trong bảng sau: (ảnh 2)

Với số liệu ở đường I, ta có:

Số trung bình của mẫu số liệu là:

\({\overline x _I}\) = \(\frac{{61.4 + 65.11 + 69.41 + 73.25 + 77.11}}{{92}}\) = \(\frac{{1615}}{{23}}\).

Phương sai của mẫu số liệu ở đường I là:

\(s_I^2\) = \(\frac{{{{61}^2}.4 + {{65}^2}.11 + {{69}^2}.41 + {{73}^2}.25 + {{77}^2}.11}}{{92}} - {\left( {\frac{{1615}}{{23}}} \right)^2}\) ≈ 15,21.

Với số liệu ở đường II, ta có:

Số trung bình của mẫu số liệu là:

\({\overline x _{II}}\) = \(\frac{{57.5 + 69.19 + 73.43 + 77.18 + 81.7}}{{92}}\) = \(\frac{{1672}}{{23}}\).

Phương sai của mẫu số liệu ở đường II là:

\(s_{II}^2\) = \(\frac{{{{57}^2}.5 + {{69}^2}.19 + {{73}^2}.43 + {{77}^2}.18 + {{81}^2}.7}}{{92}} - {\left( {\frac{{1672}}{{23}}} \right)^2}\) ≈ 25,12.

So sánh theo phương sai, mức độ ồn trên đường II phân tán hơn trên đường I.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Số trung bình của mẫu số liệu là:

\(\overline x \) = \(\frac{{9.5 + 11.12 + 13.19 + 15.21 + 17.7}}{{64}}\) = 13,40625.

Phương sai của mẫu số liệu trên là:

s2 = \(\frac{{{9^2}.5 + {{11}^2}.12 + {{13}^2}.19 + {{15}^2}.21 + {{17}^2}.7}}{{64}} - 13,{40625^2}\) ≈ 4,897.

Độ lệch chuẩn của mẫu số liệu là:

s ≈ \(\sqrt {4,897} \) ≈ 2,21.

Lời giải

a) 2

b) 10

c) 113

d) 71

 

Dựa vào biểu đồ trên, ta có bảng sau:

Biểu đồ dưới đây biểu diễn mẫu số liệu ghép nhóm mức lương nhân viên một công ty (đơn vị:  triệu đồng).  Biết công ty có 25 nhân viên.  Sử dụng biểu đồ trên, viết số thích hợp vào chỗ chấm trong các câu sau: (ảnh 2)

Tần số của nhóm [6; 8) là 25.8% = 2 (nhân viên).

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: R = 16 – 6 = 10.

Ta có: \(\frac{n}{4} = \frac{{25}}{4} = 6,25\).

Tứ phân vị thứ nhất của mẫu số liệu gốc là x7 [8; 10).

Do đó, Q1 = 8 + \(\frac{{6,25 - 2}}{6}\left( {10 - 8} \right)\) = \(\frac{{113}}{{12}}\).

Ta có: \(\frac{{3n}}{4} = \frac{{3.25}}{4} = 18,75\).

Tứ phân vị thứ ba của mẫu số liệu gốc là x19 [12; 14).

Do đó, Q3 = 12 + \(\frac{{18,75 - \left( {2 + 6 + 10} \right)}}{4}\left( {14 - 12} \right)\) = \(\frac{{99}}{8}\).

Khoảng tứ phân vị của mẫu số liệu là:

∆Q = Q3 – Q1 = \(\frac{{99}}{8}\) − \(\frac{{113}}{{12}}\) = \(\frac{{71}}{{24}}\).