Câu hỏi:

22/09/2024 231

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \({\rm{f}}({\rm{x}}) = {\rm{a}}{{\rm{x}}^3} + {\rm{b}}{{\rm{x}}^2} + {\rm{cx}} + {\rm{d}}({\rm{a}},{\rm{b}},{\rm{c}},{\rm{d}} \in \mathbb{R},{\rm{a}} > 0).\)

a) \({f^\prime }(x) = a{x^2} + bx + c.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sai

Câu hỏi cùng đoạn

Câu 2:

b) Nếu biểu thức \({\Delta ^\prime } = {{\rm{b}}^2} - 3{\rm{ac}}\) nhận giá trị dương thì phương trình \({{\rm{f}}^\prime }({\rm{x}}) = 0\) có hai nghiệm \({x_1},{x_2}\) phân biệt.

Xem lời giải

verified Lời giải của GV VietJack

Đúng

Câu 3:

c) Nếu phương trình \({{\rm{f}}^\prime }({\rm{x}}) = 0\) có hai nghiệm \({{\rm{x}}_1},{{\rm{x}}_2}\) phân biệt \(\left( {{{\rm{x}}_1} < {{\rm{x}}_2}} \right)\) thì hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) có bảng biến thiên là

c) Nếu phương trình \({{\rm{f}}^\prime }({\rm{x}}) = 0\) có hai nghiệm \({{\rm{x}}_1},{{\rm{x}}_2}\) phân biệt \(\left( {{{\rm{x}}_1} < {{\rm{x}}_2}} \right)\) thì hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) có bảng biến thiên là (ảnh 1)

Xem lời giải

verified Lời giải của GV VietJack

Sai

Câu 4:

d) Nếu phương trình \({{\rm{f}}^\prime }({\rm{x}}) = 0\) có hai nghiệm \({{\rm{x}}_1},{{\rm{x}}_2}\) phân biệt \(\left( {{{\rm{x}}_1} < {{\rm{x}}_2}} \right)\) thì \({{\rm{x}}_1}\) là điểm cực tiểu, \({{\rm{x}}_2}\) là điểm cực đại của hàm số.

Xem lời giải

verified Lời giải của GV VietJack

Sai

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

a) Đồ thị hàm số có đường tiệm cận đứng là \(x = 0.\)

Xem đáp án » 22/09/2024 2,058

Câu 2:

a) Tập xác định của hàm số là [0; 32].

Xem đáp án » 22/09/2024 519

Câu 3:

a) \({f^\prime }(x) = 3{x^2} - 1\)

Xem đáp án » 22/09/2024 267

Câu 4:

a) \({f^\prime }(x) =  - {x^2} + 1.\)

 

Xem đáp án » 22/09/2024 241

Câu 5:

a) \({\rm{a}} = - 4.\)

Xem đáp án » 22/09/2024 234

Câu 6:

a) \({f^\prime }(x) = 6{x^2} - 6x.\)

Xem đáp án » 22/09/2024 224
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua