Câu hỏi:
22/09/2024 209Diện tích hình phẳng giới hạn bởi các đường \({\rm{y}} = \sqrt {\rm{x}} ,{\rm{y}} = 2 - {\rm{x}}\) và trục Ox được tính bởi công thức
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(\sqrt x = 2 - x \Leftrightarrow x = 1.\)
\(S = {S_1} + {S_2}.\)
\({{\rm{S}}_1}\) là hình phẳng giới hạn bởi các đồ thị hàm số \({\rm{y}} = \sqrt {\rm{x}} \) và các đường thẳng \({\rm{x}} = 1,{\rm{y}} = 0.\)
\({{\rm{S}}_2}\) là hình phẳng giới hạn bởi các đồ thị hàm số \({\rm{y}} = 2 - {\rm{x}}\) và các đường thẳng \({\rm{x}} = 1,{\rm{y}} = 0.\)
\(S = \int_0^1 {\sqrt x } dx + \int_1^2 {(2 - x)} dx.\) Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = f(x)\) thoả mãn hàm \(y = {f^\prime }(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Giá trị của biểu thức \({\rm{f}}(4) - {\rm{f}}( - 4)\) bằng
Câu 2:
Câu 3:
Câu 4:
Câu 6:
Cho hàm số \(y = f(x)\) thoả mãn hàm \(y = {f^\prime }(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Giá trị của biểu thức \({\rm{f}}(6) - {\rm{f}}(1)\) bằng
Câu 7:
Hình vẽ bên biểu diễn đường thẳng\({\rm{y}} = {\rm{m}}\)cắt đồ thị hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) tại ba điểm có hoành độ \({{\rm{x}}_1}\), \({{\rm{x}}_2},{{\rm{x}}_3}\left( {{{\rm{x}}_1} < {{\rm{x}}_2} < {{\rm{x}}_3}} \right).\) Diện tích phần hình phẳng giới hạn bởi hai đường trên là
về câu hỏi!