Câu hỏi:

22/09/2024 3,590 Lưu

Diện tích hình phẳng giới hạn bởi các đường \({\rm{y}} = \sqrt {\rm{x}} ,{\rm{y}} = 2 - {\rm{x}}\) và trục Ox được tính bởi công thức

Diện tích hình phẳng giới hạn bởi các đường \({\rm{y}} = \sqrt {\rm{x}} ,{\rm{y}} = 2 - {\rm{x}}\) và trục Ox được tính bởi công thức   	A. \(\int_0^2 {(\sqrt x  - 2 + x)} dx.\)		B. \(\int_0^2 {(2 - x - \sqrt x )} dx.\) 	C. \(\int_0^1 {\sqrt x } dx + \int_1^2 {(2 - x)} dx.\)		D. \(\int_0^2 {\sqrt x } dx + \int_0^2 {(2 - x)} dx.\) (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\sqrt x  = 2 - x \Leftrightarrow x = 1.\)

\(S = {S_1} + {S_2}.\)

\({{\rm{S}}_1}\) là hình phẳng giới hạn bởi các đồ thị hàm số \({\rm{y}} = \sqrt {\rm{x}} \) và các đường thẳng \({\rm{x}} = 1,{\rm{y}} = 0.\)

\({{\rm{S}}_2}\) là hình phẳng giới hạn bởi các đồ thị hàm số \({\rm{y}} = 2 - {\rm{x}}\) và các đường thẳng \({\rm{x}} = 1,{\rm{y}} = 0.\)

\(S = \int_0^1 {\sqrt x } dx + \int_1^2 {(2 - x)} dx.\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

\(f(4) - f( - 4) = \int_{ - 4}^4 {{f^\prime }} (x)dx = \int_{ - 4}^1 {{f^\prime }} (x)dx + \int_1^4 {{f^\prime }} (x)dx = \frac{1}{2} \cdot 5 \cdot 3 + \frac{1}{2} \cdot 3 \cdot 3 = 12.\) Chọn A.

Câu 2

Lời giải

\({x^2} = 2x + 3 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x =  - 1\;x = 3}\end{array}} \right..\)

\({\rm{S}} = \int { - {1^3}} \left| {{{\rm{x}}^2} - 2{\rm{x}} - 3} \right|d{\rm{x}} = \int_{ - 1}^3 {\left( { - {{\rm{x}}^2} + 2{\rm{x}} - 3} \right)} {\rm{dx}} = \left. {\left( {\frac{{ - {{\rm{x}}^3}}}{3} + {{\rm{x}}^2} - 3{\rm{x}}} \right)} \right|_{ - 1}^3 = \frac{{32}}{3}{\rm{.}}\)Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP