Câu hỏi:

22/09/2024 484

Hình phẳng giới hạn bởi đồ thị hàm số \({\rm{y}} = - {{\rm{x}}^2} + 2{\rm{x}}\) và trục Ox có diện tích là 

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\( - {x^2} + 2x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0\;x = 2}\end{array}} \right..\)

\(S = \int_0^2 {\left| { - {x^2} + 2x} \right|} dx = \int_0^2 {\left( { - {x^2} + 2x} \right)} dx = \left( {\frac{{ - {x^3}}}{3} + {x^2}} \right)||{0^2} = \frac{4}{3}.\) Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f(x)\) thoả mãn hàm \(y = {f^\prime }(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Giá trị của biểu thức \({\rm{f}}(4) - {\rm{f}}( - 4)\) bằng

Cho hàm số \(y = f(x)\) thoả mãn hàm \(y = {f^\prime }(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Giá trị của biểu thức \({\rm{f}}(4) - {\rm{f}}( - 4)\) bằng   	A. 12.	B. 3.	C. 24.	D. 6. (ảnh 1)

Xem đáp án » 22/09/2024 1,680

Câu 2:

Cho hàm số \(y = f(x)\) có đạo hàm là hàm liên tục trên \(\mathbb{R}\) và có đồ thị \({\rm{y}} = {{\rm{f}}^\prime }({\rm{x}})\) cắt trục Ox tại đúng ba điểm phân biệt \({\rm{a}},{\rm{b}},{\rm{c}}({\rm{a}} < {\rm{c}} < {\rm{b}}).\) Gọi \({{\rm{S}}_1}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \({\rm{y}} = {{\rm{f}}^\prime }({\rm{x}})\) và trục Ox tương ứng với \({\rm{x}} \in [{\rm{a}};{\rm{c}}],{{\rm{S}}_2}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \({{\rm{f}}^\prime }({\rm{x}})\) và trục Ox tương ứng với \(x \in [{\rm{c}};{\rm{b}}].\) Nếu \({{\rm{f}}^\prime }({\rm{x}}) \le 0\forall {\rm{x}} \in [{\rm{a}};{\rm{c}}]\), \({{\rm{f}}^\prime }({\rm{x}}) \ge 0\forall {\rm{x}} \in [{\rm{c}};{\rm{b}}]\) thì giá trị của \(f(b) - f(a)\) bằng 

Xem đáp án » 22/09/2024 779

Câu 3:

Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị cắt trục Ox tại đúng ba điểm phân biệt \({\rm{a}},{\rm{b}},{\rm{c}}({\rm{a}} < {\rm{c}} < {\rm{b}}).\) Gọi \({{\rm{S}}_1}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục Ox tương ứng với \({\rm{x}} \in [{\rm{a}};{\rm{c}}],{{\rm{S}}_2}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục Ox tương ứng với \({\rm{x}} \in [{\rm{c}};{\rm{b}}].\) Nếu \({\rm{f}}({\rm{x}}) \ge 0\forall {\rm{x}} \in [{\rm{a}};{\rm{c}}],{\rm{f}}({\rm{x}}) \le 0\forall {\rm{x}} \in [{\rm{c}};{\rm{b}}]\) thì giá trị của \(\int_{\rm{a}}^{\rm{b}} {\rm{f}} ({\rm{x}}){\rm{dx}}\) bằng 

Xem đáp án » 22/09/2024 778

Câu 4:

Cho hàm số \(y = f(x)\) thoả mãn hàm \(y = {f^\prime }(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Giá trị của biểu thức \({\rm{f}}(6) - {\rm{f}}(1)\) bằng

Cho hàm số \(y = f(x)\) thoả mãn hàm \(y = {f^\prime }(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Giá trị của biểu thức \({\rm{f}}(6) - {\rm{f}}(1)\) bằng   	A. \(4\pi  - 2.\)	B. \(2\pi  + 2.\)	C. \(2\pi  - 4.\)	D. \(2\pi  - 2.\) (ảnh 1)

Xem đáp án » 22/09/2024 561

Câu 5:

Hình phẳng giới hạn bởi đồ thị hàm số \({\rm{y}} = {{\rm{x}}^2}\) và đường thẳng \({\rm{y}} = 2{\rm{x}} + 3\) có diện tích là

Xem đáp án » 22/09/2024 531

Câu 6:

Diện tích hình phẳng giới hạn bởi các đường \({\rm{y}} = \sqrt {\rm{x}} ,{\rm{y}} = 2 - {\rm{x}}\) và trục Ox được tính bởi công thức

Diện tích hình phẳng giới hạn bởi các đường \({\rm{y}} = \sqrt {\rm{x}} ,{\rm{y}} = 2 - {\rm{x}}\) và trục Ox được tính bởi công thức   	A. \(\int_0^2 {(\sqrt x  - 2 + x)} dx.\)		B. \(\int_0^2 {(2 - x - \sqrt x )} dx.\) 	C. \(\int_0^1 {\sqrt x } dx + \int_1^2 {(2 - x)} dx.\)		D. \(\int_0^2 {\sqrt x } dx + \int_0^2 {(2 - x)} dx.\) (ảnh 1)

Xem đáp án » 22/09/2024 479

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store