Câu hỏi:

23/09/2024 2,093

Có hai chiếc hộp giống nhau. Hộp thứ nhất có 5 viên bi xanh và 2 viên bi đỏ. Hộp thứ hai có 4 viên bi xanh và 6 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Bạn Sơn chọn ngẫu nhiên một hộp bi và từ đó lấy ra ngẫu nhiên 1 viên bi. Biết rằng viên bi được lấy ra có màu đỏ, xác suất bạn Sơn chọn hộp thứ hai là 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A là biến cố viên bi lấy ra là bi đỏ. Gọi B là biến cố bạn Sơn chọn hộp thứ hai.

Ta có \({\rm{P}}({\rm{B}}) = {\rm{P}}(\overline {\rm{B}} ) = 0,5;{\rm{P}}({\rm{A}}\mid {\rm{B}}) = 0,6;{\rm{P}}({\rm{A}}\mid \overline {\rm{B}} ) = \frac{2}{7}.\)

Áp dụng công thức xác suất toàn phần, ta có:

\({\rm{P}}({\rm{A}}) = {\rm{P}}({\rm{A}}\mid {\rm{B}}){\rm{P}}({\rm{B}}) + {\rm{P}}({\rm{A}}\mid \overline {\rm{B}} ){\rm{P}}(\overline {\rm{B}} ) = 0,6 \cdot 0,5 + \frac{2}{7} \cdot 0,5 = \frac{{31}}{{70}}\)

Biết rằng viên bi có màu đỏ, xác suất bạn Sơn chọn hộp thứ hai là \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = \frac{{{\rm{P}}({\rm{A}}\mid {\rm{B}}){\rm{P}}({\rm{B}})}}{{{\rm{P}}({\rm{A}})}} = \frac{{0,6 \cdot 0,5}}{{\frac{{31}}{{70}}}} = \frac{{21}}{{31}}.\)

Chọn D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A1 là biến cố viên bi lấy ra từ hộp thứ nhất là bi xanh; A2 là biến cố viên bi lấy ra từ hộp thứ nhất là bi đỏ. Gọi B là biến cố hai viên bi được lấy ra từ hộp thứ hai có cùng màu.

Ta có:

\({\rm{P}}\left( {{\rm{A}}1} \right) = \frac{2}{3};{\rm{P}}\left( {{\rm{A}}2} \right) = \frac{1}{3};{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right) = \frac{{{\rm{C}}{4^2} + {\rm{C}}{6^2}}}{{{\rm{C}}{{10}^2}}} = \frac{7}{{15}};{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right) = \frac{{{\rm{C}}{3^2} + {\rm{C}}{7^2}}}{{{\rm{C}}{{10}^2}}} = \frac{8}{{15}}\)

Áp dụng công thức xác suất toàn phần, ta có:

\({\rm{P}}({\rm{B}}) = {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right){\rm{P}}\left( {{\rm{A}}1} \right) + {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right){\rm{P}}\left( {{\rm{A}}2} \right) = \frac{7}{{15}} \cdot \frac{2}{3} + \frac{8}{{15}} \cdot \frac{1}{3} = \frac{{22}}{{45}}{\rm{.}}\)Chọn D

Lời giải

Gọi A1 là biến cố bạn Sơn chọn hộp thứ nhất; A2 là biến cố bạn Sơn chọn hộp thứ hai. Gọi B là biến cố viên bi được chọn có màu xanh.

Ta có \({\rm{P}}\left( {{\rm{A}}1} \right) = {\rm{P}}\left( {{\rm{A}}2} \right) = 0,5;{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right) = \frac{5}{7};{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right) = \frac{4}{{10}}.\)

Áp dụng công thức xác suất toàn phần, ta có:

\({\rm{P}}({\rm{B}}) = {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right){\rm{P}}\left( {{\rm{A}}1} \right) + {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right){\rm{P}}\left( {{\rm{A}}2} \right) = \left( {\frac{5}{7} + \frac{4}{{10}}} \right) \cdot \frac{1}{2} = \frac{{39}}{{70}}{\rm{.}}\)Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay