Câu hỏi:
23/09/2024 2,099Quảng cáo
Trả lời:
Gọi A là biến cố 2 thẻ lấy ra từ hộp thứ nhất cùng màu đỏ; \(\overline {\rm{A}} \) là biến cố trong 2 thẻ lấy ra từ hộp thứ nhất có 1 thẻ xanh và 1 thẻ đỏ. Gọi B là biến cố 2 thẻ lấy ra lần hai cùng màu đỏ.
Ta có \({\rm{P}}({\rm{A}}) = \frac{{{\rm{C}}{5^2}}}{{{\rm{C}}{6^2}}} = \frac{2}{3};{\rm{P}}(\overline {\rm{A}} ) = \frac{1}{3};{\rm{P}}({\rm{B}}\mid {\rm{A}}) = \frac{{{\rm{C}}{7^2}}}{{{\rm{C}}{{11}^2}}} = \frac{{21}}{{55}};{\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ) = \frac{{{\rm{C}}{6^2}}}{{{\rm{C}}_{11}^2}} = \frac{3}{{11}}.\)
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}({\rm{B}}) = {\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}}) + {\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ){\rm{P}}(\overline {\rm{A}} ) = \frac{{21}}{{55}} \cdot \frac{2}{3} + \frac{3}{{11}} \cdot \frac{1}{3} = \frac{{19}}{{55}}.\)
Biết rằng 2 thẻ lấy ra lần hai đều có màu đỏ, xác suất để 2 thẻ lấy ra lần một cùng màu là
\({\rm{P}}({\rm{A}}\mid {\rm{B}}) = \frac{{{\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}})}}{{{\rm{P}}({\rm{B}})}} = \frac{{\frac{{21}}{{55}} \cdot \frac{2}{3}}}{{\frac{{19}}{{55}}}} = \frac{{14}}{{19}}.\) Chọn D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 986
Đã bán 1,1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận