DẠNG 7. CÔNG THỨC XÁC SUẤT TOÀN PHẦN VÀ CÔNG THỨC BAYES
50 người thi tuần này 4.6 2.2 K lượt thi 9 câu hỏi 60 phút
🔥 Đề thi HOT:
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
\(P(B\mid A) = \frac{{P(A\mid B)P(B)}}{{P(A)}} = \frac{{0,5 \cdot 0,6}}{{0,3}} = 1.\) Chọn D.
Lời giải
\(\frac{{{\rm{P}}({\rm{B}})}}{{{\rm{P}}({\rm{B}}\mid {\rm{A}})}} = \frac{{{\rm{P}}({\rm{A}})}}{{{\rm{P}}({\rm{A}}\mid {\rm{B}})}} = 1.\) Chọn A.
Lời giải
Gọi A1 là biến cố bạn Sơn chọn hộp thứ nhất; A2 là biến cố bạn Sơn chọn hộp thứ hai. Gọi B là biến cố viên bi được chọn có màu xanh.
Ta có \({\rm{P}}\left( {{\rm{A}}1} \right) = {\rm{P}}\left( {{\rm{A}}2} \right) = 0,5;{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right) = \frac{5}{7};{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right) = \frac{4}{{10}}.\)
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}({\rm{B}}) = {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right){\rm{P}}\left( {{\rm{A}}1} \right) + {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right){\rm{P}}\left( {{\rm{A}}2} \right) = \left( {\frac{5}{7} + \frac{4}{{10}}} \right) \cdot \frac{1}{2} = \frac{{39}}{{70}}{\rm{.}}\)Chọn D
Lời giải
Gọi A1 là biến cố viên bi lấy ra từ hộp thứ nhất là bi xanh; A2 là biến cố viên bi lấy ra từ hộp thứ nhất là bi đỏ. Gọi B là biến cố hai viên bi được lấy ra từ hộp thứ hai có cùng màu.
Ta có:
\({\rm{P}}\left( {{\rm{A}}1} \right) = \frac{2}{3};{\rm{P}}\left( {{\rm{A}}2} \right) = \frac{1}{3};{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right) = \frac{{{\rm{C}}{4^2} + {\rm{C}}{6^2}}}{{{\rm{C}}{{10}^2}}} = \frac{7}{{15}};{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right) = \frac{{{\rm{C}}{3^2} + {\rm{C}}{7^2}}}{{{\rm{C}}{{10}^2}}} = \frac{8}{{15}}\)
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}({\rm{B}}) = {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right){\rm{P}}\left( {{\rm{A}}1} \right) + {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right){\rm{P}}\left( {{\rm{A}}2} \right) = \frac{7}{{15}} \cdot \frac{2}{3} + \frac{8}{{15}} \cdot \frac{1}{3} = \frac{{22}}{{45}}{\rm{.}}\)Chọn D
Lời giải
Gọi A là biến cố viên bi lấy ra là bi đỏ. Gọi B là biến cố bạn Sơn chọn hộp thứ hai.
Ta có \({\rm{P}}({\rm{B}}) = {\rm{P}}(\overline {\rm{B}} ) = 0,5;{\rm{P}}({\rm{A}}\mid {\rm{B}}) = 0,6;{\rm{P}}({\rm{A}}\mid \overline {\rm{B}} ) = \frac{2}{7}.\)
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}({\rm{A}}) = {\rm{P}}({\rm{A}}\mid {\rm{B}}){\rm{P}}({\rm{B}}) + {\rm{P}}({\rm{A}}\mid \overline {\rm{B}} ){\rm{P}}(\overline {\rm{B}} ) = 0,6 \cdot 0,5 + \frac{2}{7} \cdot 0,5 = \frac{{31}}{{70}}\)
Biết rằng viên bi có màu đỏ, xác suất bạn Sơn chọn hộp thứ hai là \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = \frac{{{\rm{P}}({\rm{A}}\mid {\rm{B}}){\rm{P}}({\rm{B}})}}{{{\rm{P}}({\rm{A}})}} = \frac{{0,6 \cdot 0,5}}{{\frac{{31}}{{70}}}} = \frac{{21}}{{31}}.\)
Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
432 Đánh giá
50%
40%
0%
0%
0%