🔥 Đề thi HOT:

4296 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)

21.7 K lượt thi 34 câu hỏi
2769 người thi tuần này

CÂU TRẮC NGHIỆM ĐÚNG SAI

6.9 K lượt thi 20 câu hỏi
1546 người thi tuần này

Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)

4.9 K lượt thi 22 câu hỏi
782 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)

3.8 K lượt thi 34 câu hỏi
754 người thi tuần này

Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)

2.2 K lượt thi 22 câu hỏi
596 người thi tuần này

Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)

1.7 K lượt thi 22 câu hỏi
347 người thi tuần này

(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)

2.1 K lượt thi 34 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Đáp số: 0,38.

Gọi A là biến cố tích hai số ghi trên hai thẻ chia hết cho 2 và B là biến cố tích hai số ghi trên hai thẻ chia hết cho 3.

Ta có \({\rm{P}}(\overline {\rm{A}} ) = \frac{2}{9};{\rm{P}}(\overline {\rm{B}} ) = \frac{7}{{15}}\)\({\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} ) = \frac{1}{{15}}.\)

Do đó xác suất để tích hai số ghi trên hai thẻ chia hết cho 6 là

\({\rm{P}}({\rm{A}} \cap {\rm{B}}) = 1 - {\rm{P}}(\overline {{\rm{A}} \cap {\rm{B}}} ) = 1 - {\rm{P}}(\overline {\rm{A}} \cup \overline {\rm{B}} ) = 1 - {\rm{P}}(\overline {\rm{A}} ) - {\rm{P}}(\overline {\rm{B}} ) + {\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} )\)

\( = 1 - \frac{2}{9} - \frac{7}{{15}} + \frac{1}{{15}} = \frac{{17}}{{45}} \approx 0,38\)

Lời giải

Đáp số: \({\bf{0}},{\bf{20}}.\)

Số cách xếp 8 viên bi vào 3 chiếc hộp là \({3^8}.\)

Số cách xếp bi vào hộp sao cho có một hộp chứa 4 viên bi, hai hộp còn lại, mỗi hộp chứa 2 viên bi là \(3{\rm{C}}{8^4}{\rm{C}}{4^2}.\)

Xác suất phải tìm là \(\frac{{3{\rm{C}}{8^4}{\rm{C}}{4^2}}}{{{3^8}}} = \frac{{140}}{{729}} \approx 0,20.\)

Lời giải

Đáp số: \({\bf{0}},{\bf{64}}.\)

Số cách xếp 9 viên bi vào 3 hộp sao cho hộp nào cũng có đúng 3 viên bi là \({\rm{C}}{9^3}{\rm{C}}{6^3}.\)

Để hộp nào cũng có bi xanh thì sẽ có 1 hộp chứa 2 viên bi xanh và 2 hộp còn lại mỗi hộp có đúng 1 viên bi xanh. Số cách xếp như vậy là \(3{\rm{C}}{4^2}{\rm{C}}{5^1}{\rm{C}}{2^1}{\rm{C}}{4^2}.\)

Xác suất phải tìm là \(\frac{{3{\rm{C}}{4^2}{\rm{C}}{5^1}{\rm{C}}{2^1}{\rm{C}}{4^2}}}{{{\rm{C}}{9^3}{\rm{C}}{6^3}}} = \frac{9}{{14}} \approx 0,64.\)

Lời giải

Đáp số: \({\bf{0}},{\bf{33}}.\)

Gọi A là biến cố câu hỏi được chọn là câu hỏi lịch sử và B là biến bố Vân trả lời đúng câu hỏi.

Ta có \({\rm{P}}({\rm{A}}) = 0,4;{\rm{P}}(\overline {\rm{A}} ) = 0,6;{\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,6;{\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ) = 0,8.\)

Xác suất cần tính là

\({\rm{P}}({\rm{A}}\mid {\rm{B}}) = \frac{{{\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}})}}{{{\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}}) + {\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ){\rm{P}}(\overline {\rm{A}} )}} = \frac{{0,6 \cdot 0,4}}{{0,6 \cdot 0,4 + 0,8 \cdot 0,6}} = \frac{1}{3} \approx 0,33.\)

Lời giải

Đáp số: 0,52.

Gọi T là biến cố bạn Tài thực hiện thành công thí nghiệm; D là biến cố bạn Đức thực hiện thành công thí nghiệm. Ta có \(P(T) = 0,6;P(D) = 0,7.\)

\({\rm{T}} \cup {\rm{D}}\) là biến cố có ít nhất một người thực hiện thành công thí nghiệm và \(\bar TD \cup T\bar D\) là biến cố có đúng một người thực hiện thành công thí nghiệm.

Ta có: \({\rm{P}}({\rm{T}} \cup {\rm{D}}) = 0,6 + 0,7 - 0,6.0,7 = 0,88\)

\({\rm{P}}(\overline {\rm{T}} {\rm{D}} \cup {\rm{T}}\overline {\rm{D}} ) = {\rm{P}}(\overline {\rm{T}} {\rm{D}}) + {\rm{P}}({\rm{TD}}) = 0,4.0,7 + 0,6.0,3 = 0,46.\)

Xác suất cần tính là

\({\rm{P}}(\overline {\rm{T}} {\rm{D}} \cup {\rm{T}}\overline {\rm{D}} \mid {\rm{T}} \cup {\rm{D}}) = \frac{{{\rm{P}}(\overline {\rm{T}} {\rm{D}} \cup {\rm{T}}\overline {\rm{D}} )}}{{{\rm{P}}({\rm{T}} \cup {\rm{D}})}} = \frac{{23}}{{44}} \approx 0,52\)

4.6

432 Đánh giá

50%

40%

0%

0%

0%