Câu hỏi:

23/09/2024 27,019

Một hộp chứa 10 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 10. Bạn Cường lấy ra đồng thời 2 tấm thẻ từ hộp. Tính xác suất để tích hai số ghi trên hai thẻ chia hết cho 6 (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: 0,38.

Gọi A là biến cố tích hai số ghi trên hai thẻ chia hết cho 2 và B là biến cố tích hai số ghi trên hai thẻ chia hết cho 3.

Ta có \({\rm{P}}(\overline {\rm{A}} ) = \frac{2}{9};{\rm{P}}(\overline {\rm{B}} ) = \frac{7}{{15}}\)\({\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} ) = \frac{1}{{15}}.\)

Do đó xác suất để tích hai số ghi trên hai thẻ chia hết cho 6 là

\({\rm{P}}({\rm{A}} \cap {\rm{B}}) = 1 - {\rm{P}}(\overline {{\rm{A}} \cap {\rm{B}}} ) = 1 - {\rm{P}}(\overline {\rm{A}} \cup \overline {\rm{B}} ) = 1 - {\rm{P}}(\overline {\rm{A}} ) - {\rm{P}}(\overline {\rm{B}} ) + {\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} )\)

\( = 1 - \frac{2}{9} - \frac{7}{{15}} + \frac{1}{{15}} = \frac{{17}}{{45}} \approx 0,38\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 602.

Gọi CB là biến cố trang web bị cảnh báo; M là biến cố trang web chứa mã độc.

Ta có:

\({\rm{P}}({\rm{CB}}\mid {\rm{M}}) = 0,99;{\rm{P}}({\rm{CB}}\mid \overline {\rm{M}} ) = 0,001;{\rm{P}}({\rm{M}}\mid {\rm{CB}}) = 0,66.\)

Đặt \(P(M) = p.\) Ta có:

\({\rm{P}}({\rm{M}}\mid {\rm{CB}}) = \frac{{{\rm{P}}({\rm{CB}}\mid {\rm{M}}) \cdot {\rm{P}}({\rm{M}})}}{{{\rm{P}}({\rm{CB}}\mid {\rm{M}}) \cdot {\rm{P}}({\rm{M}}) + {\rm{P}}({\rm{CB}}\mid \overline {\rm{M}} ) \cdot {\rm{P}}(\overline {\rm{M}} )}}\)

\( \Leftrightarrow \frac{{0,99 \cdot {\rm{p}}}}{{0,99 \cdot {\rm{p}} + 0,001(1 - {\rm{p}})}} = 0,66.\)

\(3{\rm{p}} = 2(0,899{\rm{p}} + 0,001)\)

\({\rm{p}} = \frac{1}{{601}}.\)

Lời giải

Đáp số: \({\bf{0}},{\bf{08}}.\)

Gọi Ak là biến cố Hải lấy được bi xanh ở lần lấy bi thứ k. Ta có xác suất của biến cố Hải lấy được bi xanh ở lần lấy bi thứ 3 là

\({\rm{P}}\left( {{\rm{A}}3} \right) = {\rm{P}}\left( {{\rm{A}}3\overline {\rm{A}} 2\overline {\rm{A}} 1} \right) = {\rm{P}}\left( {\overline {\rm{A}} 1} \right){\rm{P}}\left( {\overline {\rm{A}} 2\mid \overline {\rm{A}} 1} \right){\rm{P}}\left( {{\rm{A}}3\mid \overline {\rm{A}} 2{{\overline {\rm{A}} }_1}} \right) = \frac{4}{{10}} \cdot \frac{3}{9} \cdot \frac{5}{8} = \frac{1}{{12}} \approx 0,08.\)

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay