Câu hỏi:

23/09/2024 4,254

Bạn Vân tham gia một cuộc thi về khoa học xã hội. Bộ câu hỏi của cuộc thi gồm 10 câu hỏi lịch sử và 15 câu hỏi địa lí. Xác suất Vân trả lời đúng một câu hỏi lịch sử là 0,6 và một câu hỏi địa lí là 0,8. Vân chọn ngẫu nhiên 1 câu hỏi trong bộ câu hỏi. Biết rằng Vân trả lời đúng câu hỏi đó, tính xác suất để đó là câu hỏi lịch sử (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: \({\bf{0}},{\bf{33}}.\)

Gọi A là biến cố câu hỏi được chọn là câu hỏi lịch sử và B là biến bố Vân trả lời đúng câu hỏi.

Ta có \({\rm{P}}({\rm{A}}) = 0,4;{\rm{P}}(\overline {\rm{A}} ) = 0,6;{\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,6;{\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ) = 0,8.\)

Xác suất cần tính là

\({\rm{P}}({\rm{A}}\mid {\rm{B}}) = \frac{{{\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}})}}{{{\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}}) + {\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ){\rm{P}}(\overline {\rm{A}} )}} = \frac{{0,6 \cdot 0,4}}{{0,6 \cdot 0,4 + 0,8 \cdot 0,6}} = \frac{1}{3} \approx 0,33.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 0,38.

Gọi A là biến cố tích hai số ghi trên hai thẻ chia hết cho 2 và B là biến cố tích hai số ghi trên hai thẻ chia hết cho 3.

Ta có \({\rm{P}}(\overline {\rm{A}} ) = \frac{2}{9};{\rm{P}}(\overline {\rm{B}} ) = \frac{7}{{15}}\)\({\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} ) = \frac{1}{{15}}.\)

Do đó xác suất để tích hai số ghi trên hai thẻ chia hết cho 6 là

\({\rm{P}}({\rm{A}} \cap {\rm{B}}) = 1 - {\rm{P}}(\overline {{\rm{A}} \cap {\rm{B}}} ) = 1 - {\rm{P}}(\overline {\rm{A}} \cup \overline {\rm{B}} ) = 1 - {\rm{P}}(\overline {\rm{A}} ) - {\rm{P}}(\overline {\rm{B}} ) + {\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} )\)

\( = 1 - \frac{2}{9} - \frac{7}{{15}} + \frac{1}{{15}} = \frac{{17}}{{45}} \approx 0,38\)

Lời giải

Đáp số: 602.

Gọi CB là biến cố trang web bị cảnh báo; M là biến cố trang web chứa mã độc.

Ta có:

\({\rm{P}}({\rm{CB}}\mid {\rm{M}}) = 0,99;{\rm{P}}({\rm{CB}}\mid \overline {\rm{M}} ) = 0,001;{\rm{P}}({\rm{M}}\mid {\rm{CB}}) = 0,66.\)

Đặt \(P(M) = p.\) Ta có:

\({\rm{P}}({\rm{M}}\mid {\rm{CB}}) = \frac{{{\rm{P}}({\rm{CB}}\mid {\rm{M}}) \cdot {\rm{P}}({\rm{M}})}}{{{\rm{P}}({\rm{CB}}\mid {\rm{M}}) \cdot {\rm{P}}({\rm{M}}) + {\rm{P}}({\rm{CB}}\mid \overline {\rm{M}} ) \cdot {\rm{P}}(\overline {\rm{M}} )}}\)

\( \Leftrightarrow \frac{{0,99 \cdot {\rm{p}}}}{{0,99 \cdot {\rm{p}} + 0,001(1 - {\rm{p}})}} = 0,66.\)

\(3{\rm{p}} = 2(0,899{\rm{p}} + 0,001)\)

\({\rm{p}} = \frac{1}{{601}}.\)